Interfacial lithium-ion transportation in solid-state batteries: Challenges and prospects

被引:1
作者
Liu, Ming [1 ]
Song, Ailing [1 ]
Zhang, Xinyi [1 ]
Wang, Jie [1 ]
Fan, Yuqian [1 ]
Wang, Guoxiu [2 ]
Tian, Hao [2 ]
Ma, Zhipeng [1 ,3 ]
Shao, Guangjie [1 ,3 ]
机构
[1] Yanshan Univ, Coll Environm & Chem Engn, Hebei Key Lab Appl Chem, Hebei Key Lab Heavy Met Deep Remediat Water & Reso, Qinhuangdao 066004, Peoples R China
[2] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sch Math & Phys Sci, Broadway, NSW 2007, Australia
[3] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
关键词
Interfacial lithium-ion transfer; Interfacial resistance; Kinetics design; Solid-state battery; LI-METAL BATTERIES; NI-RICH; HIGH-PERFORMANCE; ELECTROLYTE; ANODE; DESIGN; LIQUID; STABILITY; ULTRATHIN; INSIGHTS;
D O I
10.1016/j.nanoen.2025.110749
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state lithium-ion batteries (SSBs) have gained widespread attention due to their enhanced safety and energy density over conventional liquid electrolyte systems. However, their practical application is hindered by significant polarization during cycling, primarily caused by increased interface impedance. To address the challenges of slow lithium-ion diffusion, optimizing interfacial kinetics has emerged as a key strategy to improve the electrochemical performance of SSBs. However, the mechanisms behind battery failure, especially interface polarization, are not fully understood and require further investigation. This review explores the origins of interfacial polarization, including poor contact, parasitic reactions, and space charge layer, supported by theoretical calculations, experimental data, and advanced characterizations. Then, the latest progress categorized as in-situ solidification, buffer layer, ionic liquid, solid-state electrolytes modification, artificial solid electrolyte interphases, coating layers, dielectric additives, and piezoelectric additives are summarized to elucidate the underlying mechanisms of Li+ transport across interfaces. Finally, the integration of mechanical behavior with outstanding interfacial engineering is emphasized as a key factor for advancing SSBs performance and stability, providing insights for the development of next-generation lithium-based batteries.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] A review on "Growth mechanisms and optimization strategies for the interface state of solid-state lithium-ion batteries"
    Liu, Guanzuo
    Yuan, Zhuo
    Deng, Yufeng
    Yu, Xinbiao
    Huang, Xinzhe
    Zheng, Guoxu
    Li, Yinan
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2024, 21 (01) : 5 - 43
  • [32] Interfacial challenges in all-solid-state lithium batteries
    Huang, Yonglin
    Shao, Bowen
    Han, Fudong
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 33
  • [33] Nanocomposite polymer electrolytes for solid-state lithium-ion batteries with enhanced electrochemical properties
    Liu, Rong
    Zhang, Genyan
    Li, Ying
    Zhang, Jinfang
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (03)
  • [34] Recent Advances of LATP and Their NASICON Structure as a Solid-State Electrolyte for Lithium-Ion Batteries
    Yin, Jian-Hong
    Zhu, Hua
    Yu, Shi-Jin
    Dong, Yue-Bing
    Wei, Quan-Ya
    Xu, Guo-Qian
    Xiong, Yan
    Qian, Yan
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (20)
  • [35] Preparation and characterization of hybrid solid-state electrolytes for high performance lithium-ion batteries
    Ren, He
    Zhang, Yifan
    Chen, Yan
    Yang, Yubo
    Yang, Chenfei
    Miao, Xiaowei
    Li, Weili
    Yang, Gang
    SOLID STATE SCIENCES, 2024, 148
  • [36] Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries
    Yin, Lihong
    Yuan, Huimin
    Kong, Long
    Lu, Zhouguang
    Zhao, Yusheng
    CHEMICAL COMMUNICATIONS, 2020, 56 (08) : 1251 - 1254
  • [37] Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries
    Gong, Yunhui
    Fu, Kun
    Xu, Shaomao
    Dai, Jiaqi
    Hamann, Tanner R.
    Zhang, Lei
    Hitz, Gregory T.
    Fu, Zhezhen
    Ma, Zhaohui
    McOwen, Dennis W.
    Han, Xiaogang
    Hu, Liangbing
    Wachsman, Eric D.
    MATERIALS TODAY, 2018, 21 (06) : 594 - 601
  • [38] Talc Nanosheet Ionogel Electrolytes with High Lithium-Ion Conductivity for Solid-State Lithium Metal Batteries
    Luo, Xinjie
    Li, Jiaming
    Gu, Yuxing
    Du, Jian
    Huang, Yijia
    Baskin, Igor
    Ein-Eli, Yair
    Hyun, Woo Jin
    NANO LETTERS, 2025, 25 (09) : 3430 - 3437
  • [39] Research progress on space charge layer effect in lithium-ion solid-state battery
    Zhang, Qian
    Kong, YaQi
    Gao, KeXin
    Wen, YaJing
    Zhang, Qi
    Fang, HuaYi
    Ma, ChunJie
    Du, YaPing
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (10) : 2246 - 2258
  • [40] Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries
    Gu, Lanhui
    Han, Jiajia
    Chen, Minfeng
    Zhou, Weijun
    Wang, Xuefeng
    Xu, Min
    Lin, Haichen
    Liu, Haodong
    Chen, Huixin
    Chen, Jizhang
    Zhang, Qiaobao
    Han, Xiang
    ENERGY STORAGE MATERIALS, 2022, 52 : 547 - 561