Interfacial lithium-ion transportation in solid-state batteries: Challenges and prospects

被引:1
作者
Liu, Ming [1 ]
Song, Ailing [1 ]
Zhang, Xinyi [1 ]
Wang, Jie [1 ]
Fan, Yuqian [1 ]
Wang, Guoxiu [2 ]
Tian, Hao [2 ]
Ma, Zhipeng [1 ,3 ]
Shao, Guangjie [1 ,3 ]
机构
[1] Yanshan Univ, Coll Environm & Chem Engn, Hebei Key Lab Appl Chem, Hebei Key Lab Heavy Met Deep Remediat Water & Reso, Qinhuangdao 066004, Peoples R China
[2] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sch Math & Phys Sci, Broadway, NSW 2007, Australia
[3] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
关键词
Interfacial lithium-ion transfer; Interfacial resistance; Kinetics design; Solid-state battery; LI-METAL BATTERIES; NI-RICH; HIGH-PERFORMANCE; ELECTROLYTE; ANODE; DESIGN; LIQUID; STABILITY; ULTRATHIN; INSIGHTS;
D O I
10.1016/j.nanoen.2025.110749
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state lithium-ion batteries (SSBs) have gained widespread attention due to their enhanced safety and energy density over conventional liquid electrolyte systems. However, their practical application is hindered by significant polarization during cycling, primarily caused by increased interface impedance. To address the challenges of slow lithium-ion diffusion, optimizing interfacial kinetics has emerged as a key strategy to improve the electrochemical performance of SSBs. However, the mechanisms behind battery failure, especially interface polarization, are not fully understood and require further investigation. This review explores the origins of interfacial polarization, including poor contact, parasitic reactions, and space charge layer, supported by theoretical calculations, experimental data, and advanced characterizations. Then, the latest progress categorized as in-situ solidification, buffer layer, ionic liquid, solid-state electrolytes modification, artificial solid electrolyte interphases, coating layers, dielectric additives, and piezoelectric additives are summarized to elucidate the underlying mechanisms of Li+ transport across interfaces. Finally, the integration of mechanical behavior with outstanding interfacial engineering is emphasized as a key factor for advancing SSBs performance and stability, providing insights for the development of next-generation lithium-based batteries.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Comparative Study on the Thermal Characteristics of Solid-State Lithium-Ion Batteries
    Yang, Rui
    Xie, Yi
    Li, Kuining
    Tran, Manh-Kien
    Fowler, Michael
    Panchal, Satyam
    Deng, Zhongwei
    Zhang, Yangjun
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (01): : 1541 - 1557
  • [2] Interfacial Challenges in Solid-State Li Ion Batteries
    Luntz, Alan C.
    Voss, Johannes
    Reuter, Karsten
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (22): : 4599 - 4604
  • [3] Are solid-state batteries safer than lithium-ion batteries?
    Bates, Alex M.
    Preger, Yuliya
    Torres-Castro, Loraine
    Harrison, Katharine L.
    Harris, Stephen J.
    Hewson, John
    JOULE, 2022, 6 (04) : 742 - 755
  • [4] Solid-State Polymer Electrolytes for Lithium-Ion Batteries
    Karpushkin, E. A.
    Lopatina, L. I.
    Drozhzhin, O. A.
    Sergeyev, V. G.
    MOSCOW UNIVERSITY CHEMISTRY BULLETIN, 2024, 79 (06) : 420 - 428
  • [5] Lithium-Ion Batteries: Nomenclature of Interphases with Liquid or Solid-State Electrolytes
    Kyeremateng, N. Amponsah
    Elia, Giuseppe A.
    Hahn, Robert
    Slater, Peter R.
    BATTERIES & SUPERCAPS, 2023, 6 (03)
  • [6] Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries
    Yuan, Hongyan
    Luan, Jingyi
    Yang, Zelin
    Zhang, Jian
    Wu, Yufeng
    Lu, Zhouguang
    Liu, Hongtao
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) : 7249 - 7256
  • [7] Interfacial challenges and recent advances of solid-state lithium metal batteries
    Jeong, Wooyoung
    Yun, Jonghyeok
    Lee, Jong-Won
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2024, 45 (10) : 806 - 820
  • [8] Hydroxyapatite functionalization of solid polymer electrolytes for high-conductivity solid-state lithium-ion batteries
    Liang, Y.
    Liu, Y.
    Chen, D.
    Dong, L.
    Guang, Z.
    Liu, J.
    Yuan, B.
    Yang, M.
    Dong, Y.
    Li, Q.
    Yang, C.
    Tang, D.
    He, W.
    MATERIALS TODAY ENERGY, 2021, 20
  • [9] Flexible Solid-State Lithium-Ion Batteries: Materials and Structures
    Deng, Ru
    He, Tian
    ENERGIES, 2023, 16 (12)
  • [10] Progress in solid-state high voltage lithium-ion battery electrolytes
    Ahniyaz, Anwar
    de Meatza, Iratxe
    Kvasha, Andriy
    Garcia-Calvo, Oihane
    Ahmed, Istaq
    Sgroi, Mauro Francesco
    Giuliano, Mattia
    Dotoli, Matteo
    Dumitrescu, Mihaela-Aneta
    Jahn, Marcus
    Zhang, Ningxin
    ADVANCES IN APPLIED ENERGY, 2021, 4