The space coronagraph optical bench (SCoOB): 4. Vacuum performance of a high contrast imaging testbed

被引:0
作者
Van Gorkom, Kyle [1 ]
Douglas, Ewan S. [1 ]
Milani, Kian [1 ,2 ]
Ashcraft, Jaren N. [1 ,2 ]
Anche, Ramya M. [1 ]
Jenkins, Emory [1 ,2 ]
Ingraham, Patrick [1 ]
Haffert, Sebastiaan [1 ]
Kim, Daewook [2 ]
Choi, Heejoo [2 ]
Durney, Olivier [1 ]
机构
[1] Univ Arizona, Steward Observ, 933N Cherry Ave, Tucson, AZ 85721 USA
[2] Univ Arizona, James C Wyant Coll Opt Sci, 933N Cherry Ave, Tucson, AZ 85721 USA
来源
SPACE TELESCOPES AND INSTRUMENTATION 2024: OPTICAL, INFRARED, AND MILLIMETER WAVE | 2024年 / 13092卷
关键词
high contrast imaging; coronagraphy; wavefront control; exoplanets;
D O I
10.1117/12.3020654
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Space Coronagraph Optical Bench (SCoOB) is a high-contrast imaging testbed built to demonstrate starlight suppression techniques at visible wavelengths in a space-like vacuum environment. The testbed is designed to achieve <10-8 contrast from 3 - 10 lambda/D in a one-sided dark hole using a liquid crystal vector vortex wave-plate and a 952-actuator Kilo-C deformable mirror (DM) from Boston Micromachines (BMC). We have recently expanded the testbed to include a field stop for mitigation of stray/scattered light, a precision-fabricated pin-hole in the source simulator, a Minus K passive vibration isolation table for jitter reduction, and a low-noise vacuum-compatible CMOS sensor. We report the latest contrast performance achieved using implicit electric field conjugation (iEFC) at a vacuum of similar to 10(-6) Torr and over arange of b and passes with central wavelengths from 500 to 650nm and bandwidths (BW) from << 1% to 15%. Our jitter in vacuum is < 3 x 10(-3)lambda/D, and the best contrast performance to-date in a half-sided D-shaped dark hole is 2.2 x 10(-9) in a << 1% BW, 4 x 10(-9) in a 2% BW, and 2.5 x 10(-8) in a 15% BW.
引用
收藏
页数:16
相关论文
共 32 条
[1]  
Anche R. M., 2024, Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, V13092
[2]  
Ashcraft J. N., 2024, SPIE, V13092
[3]  
Bailey V. P., 2023, International Society for Optics and Photonics, SPIE, V12680
[4]   SPACE TELESCOPE LOW-SCATTERED-LIGHT CAMERA - A MODEL [J].
BRECKINRIDGE, JB ;
KUPER, TG ;
SHACK, RV .
OPTICAL ENGINEERING, 1984, 23 (06) :816-820
[5]   Optical vortex coronagraph [J].
Foo, G ;
Palacios, DM ;
Swartzlander, GA .
OPTICS LETTERS, 2005, 30 (24) :3308-3310
[6]  
Gaudi B. S., 2020, The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report
[7]  
Giveon A., 2007, Broadband wavefront correction algorithm for high-contrast imaging systems
[8]  
Gorkom K. V., 2022, SPIE, V12180
[9]   The Compute and Control for Adaptive Optics (cacao) real-time control software package [J].
Guyon, Olivier ;
Sevin, Arnaud ;
Gratadour, Damien ;
Bernard, Julien ;
Ltaief, Hatem ;
Sukkari, Dalal ;
Cetre, Sylvain ;
Skaf, Nour ;
Lozi, Julien ;
Martinache, Frantz ;
Clergeon, Christophe ;
Norris, Barnaby ;
Wong, Alison ;
Males, Jared .
ADAPTIVE OPTICS SYSTEMS VI, 2018, 10703
[10]   Implicit electric field conjugation: Data-driven focal plane control [J].
Haffert, S. Y. ;
Males, J. R. ;
Ahn, K. ;
Van Gorkom, K. ;
Guyon, O. ;
Close, L. M. ;
Long, J. D. ;
Hedglen, A. D. ;
Schatz, L. ;
Kautz, M. ;
Lumbres, J. ;
Rodack, A. ;
Knight, J. M. ;
Miller, K. .
ASTRONOMY & ASTROPHYSICS, 2023, 673