On the Adversarial Robustness of Decision Trees and a Symmetry Defense

被引:0
作者
Lindqvist, Blerta [1 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo 02150, Finland
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Perturbation methods; Robustness; Training; Boosting; Accuracy; Threat modeling; Diabetes; Decision trees; Current measurement; Closed box; Adversarial perturbation attacks; adversarial robustness; equivariance; gradient-boosting decision trees; invariance; symmetry defense; XGBoost;
D O I
10.1109/ACCESS.2025.3530695
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Gradient-boosting decision tree classifiers (GBDTs) are susceptible to adversarial perturbation attacks that change inputs slightly to cause misclassification. GBDTs are customarily used on non-image datasets that lack inherent symmetries, which might be why data symmetry in the context of GBDT classifiers has not received much attention. In this paper, we show that GBDTs can classify symmetric samples differently, which means that GBDTs lack invariance with respect to symmetry. Based on this, we defend GBDTs against adversarial perturbation attacks using symmetric adversarial samples in order to obtain correct classification. We apply and evaluate the symmetry defense against six adversarial perturbation attacks on the GBDT classifiers of nine datasets with a threat model that ranges from zero-knowledge to perfect-knowledge adversaries. Against zero-knowledge adversaries, we use the feature inversion symmetry and exceed the accuracies of default and robust classifiers by up to 100% points. Against perfect-knowledge adversaries for the GBDT classifier of the F-MNIST dataset, we use the feature inversion and horizontal flip symmetries and exceed the accuracies of default and robust classifiers by up to 96% points. Finally, we show that the current definition of adversarial robustness based on the minimum perturbation values of misclassifying adversarial samples might be inadequate for two reasons. First, this definition assumes that attacks mostly succeed, failing to consider the case when attacks are unable to construct misclassifying adversarial samples against a classifier. Second, GBDT adversarial robustness as currently defined can decrease by training with additional samples, even training samples, which counters the common wisdom that more training samples should increase robustness. With the current definition of GBDT adversarial robustness, we can make GBDTs more adversarially robust by training them with fewer samples! The code is publicly available at https://github.com/blertal/xgboost-symmetry-defense.
引用
收藏
页码:16120 / 16132
页数:13
相关论文
共 50 条
  • [41] Defending Against Adversarial Examples via Soft Decision Trees Embedding
    Hua, Yingying
    Ge, Shiming
    Gao, Xindi
    Jin, Xin
    Zeng, Dan
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 2106 - 2114
  • [42] Exploring the Impact of Conceptual Bottlenecks on Adversarial Robustness of Deep Neural Networks
    Rasheed, Bader
    Abdelhamid, Mohamed
    Khan, Adil
    Menezes, Igor
    Khatak, Asad Masood
    IEEE ACCESS, 2024, 12 : 131323 - 131335
  • [43] Improvement of timetable robustness by analysis of drivers' operation based on decision trees
    Ochiai, Yasufumi
    Masuma, Yoshiki
    Tomii, Norio
    JOURNAL OF RAIL TRANSPORT PLANNING & MANAGEMENT, 2019, 9 : 57 - 65
  • [44] Robustness Against Adversarial Attacks in Neural Networks Using Incremental Dissipativity
    Aquino, Bernardo
    Rahnama, Arash
    Seiler, Peter
    Lin, Lizhen
    Gupta, Vijay
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2341 - 2346
  • [45] Adversarial Weight Prediction Networks for Defense of Industrial FDC Systems
    Yin, Zhenqin
    Ye, Lingjian
    Ge, Zhiqiang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (11) : 13201 - 13211
  • [46] Image Super-Resolution as a Defense Against Adversarial Attacks
    Mustafa, Aamir
    Khan, Salman H.
    Hayat, Munawar
    Shen, Jianbing
    Shao, Ling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1711 - 1724
  • [47] Decision trees
    de Ville, Barry
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (06): : 448 - 455
  • [48] Testing and Enhancing Adversarial Robustness of Hyperdimensional Computing
    Ma, Dongning
    Rosing, Tajana Simunic
    Jiao, Xun
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (11) : 4052 - 4064
  • [49] Robustness Tokens: Towards Adversarial Robustness of Transformers
    Pulfer, Brian
    Belousov, Yury
    Voloshynovskiy, Slava
    COMPUTER VISION - ECCV 2024, PT LIX, 2025, 15117 : 110 - 127
  • [50] On the Robustness of Bayesian Neural Networks to Adversarial Attacks
    Bortolussi, Luca
    Carbone, Ginevra
    Laurenti, Luca
    Patane, Andrea
    Sanguinetti, Guido
    Wicker, Matthew
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 14