Asymptotic optimality;
Cross-validation;
Global Fr & eacute;
chet regression;
Model averaging;
D O I:
10.1016/j.jmva.2025.105416
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Non-Euclidean complex data analysis becomes increasingly popular in various fields of data science. In a seminal paper, Petersen and M & uuml;ller (2019) generalized the notion of regression analysis to non-Euclidean response objects. Meanwhile, in the conventional regression analysis, model averaging has a long history and is widely applied in statistics literature. This paper studies the problem of optimal prediction for non-Euclidean objects by extending the method of model averaging. In particular, we generalize the notion of model averaging for global Fr & eacute;chet regressions and establish an optimal property of the cross-validation to select the averaging weights in terms of the final prediction error. A simulation study illustrates excellent out-of-sample predictions of the proposed method.
机构:
Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universidad Politécnica de ValenciaInstituto Universitario de Matemática Pura y Aplicada IUMPA, Universidad Politécnica de Valencia
机构:
Saarland University and Max Planck Institute for Informatics, Saarland Informatics Campus Campus E1 3, SaarbruckenSaarland University and Max Planck Institute for Informatics, Saarland Informatics Campus Campus E1 3, Saarbrucken
Bringmann K.
Künnemann M.
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E1 4, SaarbruckenSaarland University and Max Planck Institute for Informatics, Saarland Informatics Campus Campus E1 3, Saarbrucken
Künnemann M.
Nusser A.
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Institute for Informatics and Graduate, School of Computer Science, Saarland Informatics Campus Campus E1 4, SaarbruckenSaarland University and Max Planck Institute for Informatics, Saarland Informatics Campus Campus E1 3, Saarbrucken
机构:
Xiamen Univ, Sch Econ, Dept Stat & Data Sci, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Econ, Dept Stat & Data Sci, Xiamen 361005, Peoples R China
Tian, Bing
Kang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USAXiamen Univ, Sch Econ, Dept Stat & Data Sci, Xiamen 361005, Peoples R China
Kang, Jian
Zhong, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Econ, Dept Stat & Data Sci, Xiamen 361005, Peoples R China
Xiamen Univ, MOE Key Lab Econometr, Fujian Key Lab Stat, WISE, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Econ, Dept Stat & Data Sci, Xiamen 361005, Peoples R China
机构:
Shevchenko Kyiv National University, KyivShevchenko Kyiv National University, Kyiv
Kas'yanov P.O.
Mel'nyk V.S.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Applied System Analysis, Ukrainian Academy of Sciences, Ukrainian Ministry of Education and Science, KyivShevchenko Kyiv National University, Kyiv