Construction of minimal binary linear codes with dimension n+3

被引:0
作者
Shaikh, Wajid M. [1 ]
Jain, Rupali S. [1 ]
Reddy, B. Surendranath [1 ]
Patil, Bhagyashri S. [1 ]
机构
[1] SRTMU Nanded, Sch Computat Sci, Nanded, India
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2025年 / 17卷 / 02期
关键词
Linear code; Minimal code; Weight distribution; Ashikhmin-Barg condition;
D O I
10.1007/s12095-024-00768-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, for n >= 6, we present the generic construction of binary linear codes of length 2(n) - 1 with dimension n + 3, and derive the necessary and sufficient condition for the constructed codes to be minimal. Using this generic construction, a new family of minimal binary linear codes violating the Ashikhmin-Barg condition will be constructed from a special class of Boolean functions. We also obtain the weight distribution of the constructed minimal binary linear codes. We will achieve minimal codes with the highest dimension, resulting in a better rate of transmission.
引用
收藏
页码:433 / 452
页数:20
相关论文
共 25 条
[1]   Minimal vectors in linear codes [J].
Ashikhmin, A ;
Barg, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) :2010-2017
[2]   Minimal Linear Codes in Odd Characteristic [J].
Bartoli, Daniele ;
Bonini, Matteo .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) :4152-4155
[3]   Linear codes from perfect nonlinear mappings and their secret sharing schemes [J].
Carlet, C ;
Ding, CS ;
Yuan, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (06) :2089-2102
[4]   Towards Secure Two-Party Computation from the Wire-Tap Channel [J].
Chabanne, Herve ;
Cohen, Gerard ;
Patey, Alain .
INFORMATION SECURITY AND CRYPTOLOGY - ICISC 2013, 2014, 8565 :34-46
[5]   Linear codes from simplicial complexes [J].
Chang, Seunghwan ;
Hyun, Jong Yoon .
DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (10) :2167-2181
[6]  
Cohen Gerard D., 2013, Cryptography and Coding. 14th IMA International Conference, IMACC 2013. Proceedings: LNCS 8308, P85, DOI 10.1007/978-3-642-45239-0_6
[7]   Minimal Binary Linear Codes [J].
Ding, Cunsheng ;
Heng, Ziling ;
Zhou, Zhengchun .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) :6536-6545
[8]   A construction of binary linear codes from Boolean functions [J].
Ding, Cunsheng .
DISCRETE MATHEMATICS, 2016, 339 (09) :2288-2303
[9]   A Class of Two-Weight and Three-Weight Codes and Their Applications in Secret Sharing [J].
Ding, Kelan ;
Ding, Cunsheng .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) :5835-5842
[10]  
Du XN, 2023, DESIGN CODE CRYPTOGR, V91, P2273, DOI 10.1007/s10623-023-01198-5