共 93 条
- [21] Hendrycks D., Dietterich T., Benchmarking neural network robustness to common corruptions and perturbations, Proc. Int. Conf. Learn. Represent., (2018)
- [22] Taori R., Dave A., Shankar V., Measuring robustness to natural distribution shifts in image classification, Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), pp. 18583-18599, (2020)
- [23] Beery S., Van Horn G., Perona P., Recognition in terra incognita, Proc. Eur. Conf. Comput. Vis. (ECCV), pp. 456-473, (2018)
- [24] Scholkopf B., Et al., Towards causal representation learning, (2021)
- [25] Gu Q., Et al., PIT: Position-invariant transform for cross-FoV domain adaptation, Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pp. 8761-8770, (2021)
- [26] Fu H., Gong M., Wang C., Batmanghelich K., Zhang K., Tao D., Geometry-consistent generative adversarial networks for onesided unsupervised domain mapping, Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 2427-2436, (2019)
- [27] Pearl J., A probabilistic calculus of actions, (2013)
- [28] Wei Y., Yang L., Han Y., Hu Q., Multi-source collaborative contrastive learning for decentralized domain adaptation, IEEE Trans. Circuits Syst. Video Technol., 33, 5, pp. 2202-2216, (2023)
- [29] Meng R., Et al., Attention diversification for domain generalization, Proc. Eur. Conf. Comput. Vis. (ECCV), pp. 322-340, (2022)
- [30] Ganin Y., Et al., Domain-adversarial training of neural networks, J. Mach. Learn. Res., 17, 1, pp. 1-35, (2016)