High-entropy (La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 ceramic: A novel dual-phase high-entropy ceramic

被引:0
作者
Li, Zhefeng [1 ]
Bai, Yu [1 ]
Hao, Jiajing [1 ]
Dong, Hongying [2 ]
Yang, Ting [3 ]
Gao, Yuanming [1 ]
Ma, Wen [1 ]
机构
[1] Inner Mongolia Univ Technol, Sch Mat Sci & Engn, Inner Mongolia Key Lab New Mat & Surface Engn, Hohhot 010051, Peoples R China
[2] Inner Mongolia Univ Technol, Sch Chem Engn, Hohhot 010051, Peoples R China
[3] Inner Mongolia Acad Sci & Technol, Hohhot 010020, Peoples R China
关键词
High-entropy ceramics; Solution precursor plasma spray; Thermal barrier coating (TBC); THERMAL-BARRIER COATINGS; RARE-EARTH-ZIRCONATE; CONDUCTIVITY;
D O I
10.1016/j.jeurceramsoc.2025.117361
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thermal barrier coating (TBC) materials, used to protect high-temperature components in gas turbines, require properties such as low thermal conductivity, resistance to sintering, and high-temperature stability. In this study, a novel defect fluorite-phase high-entropy zirconate powder(La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 was synthesized using solution precursor plasma spraying (SPPS), which exhibits high sphericity and uniform composition distribution. The(La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 ceramic bulk was sintered from SPPS prepared powder by pressureless sintering. The phase structures, thermal and mechanical properties of the samples were investigated using various techniques. The results indicated that the(La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 ceramic bulk has a defect fluorite-pyrochlore dual-phase structure and exhibits a low thermal conductivity about 1.09 W & sdot;m-1 & sdot;K-1 at 1400 degrees C. Compared to La2Zr2O7 ceramic,(La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 exhibits a slower grain growth rate of 3.6 x 10-4 mu m/h, it also displays superior mechanical properties, including high hardness (10.03 +/- 0.32 GPa) and fracture toughness KIC (1.04 +/- 0.17 MPa & sdot;m1/2). These outstanding thermal and mechanical properties make (La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 a highly promising candidate for TBC applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Grain-refining fabrication of nanocrystalline (La0.2Nd0.2Sm0.2Gd0.2Eu0.2)2Zr2O7 high-entropy ceramics by ultra-high pressure sintering
    Wu, Zhangtian
    Ji, Wei
    Zhang, Jinyong
    Yuan, Yanan
    Zou, Ji
    Wang, Weimin
    Fu, Zhengyi
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 167 : 205 - 212
  • [32] Stable preparation of defective fluorite structure high entropy (Y 0.2 Sm 0.2 Eu 0.2 Er 0.2 Yb 0.2 ) 2 Zr 2 O 7 ceramic powders by molten salt synthesis
    Liu, Tao
    Ma, Beiyue
    Zan, Wenyu
    Liu, Hao
    Ding, Jun
    Ma, Yan
    Deng, Chengji
    CERAMICS INTERNATIONAL, 2024, 50 (19) : 36156 - 36165
  • [33] Successful synthesis of proton-conducting high-entropy (La0.2Nd0.2Ho0.2Lu0.2Y0.2 ) 2 ZrO5 ceramics
    Shlyakhtina, A. V.
    Baldin, E. D.
    Vorobieva, G. A.
    Stolbov, D. N.
    Lyskov, N. V.
    CERAMICS INTERNATIONAL, 2024, 50 (20) : 40330 - 40338
  • [34] Unveiling the underlying mechanism of unusual thermal conductivity behavior in multicomponent high-entropy (La0.2Gd0.2Y0.2Yb0.2Er0.2)2 (Zr1-xCex)2O7 ceramics
    Zhang, Yonghe
    Xie, Min
    Wang, Zhigang
    Song, Xiwen
    Mu, Rende
    Gao, Jianquan
    Bao, Jinxiao
    Zhou, Fen
    Pan, Wei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 958 (958)
  • [35] Phase evolution and thermophysical properties of high-entropy RE2(Y0.2Yb0.2Nb0.2Ta0.2Ce0.2)2O7 oxides
    Xu, Liang
    Su, Lei
    Wang, Hongjie
    Niu, Min
    Zhuang, Lei
    Peng, Kang
    Fan, Xingyu
    Gao, Hongfei
    Lu, De
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2022, 105 (08) : 5490 - 5500
  • [36] Microstructure and magnetic properties of novel high-entropy perovskite ceramics (Gd 0.2 La 0.2 Nd 0.2 Sm 0.2 Y 0.2 )MnO 3
    Qin, Jiedong
    Wen, Zhiqin
    Ma, Bo
    Wu, Zhenyu
    Lv, Yunming
    Yu, Junjie
    Zhao, Yuhong
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 597
  • [37] Preparation of Ultrafine-Grained (Ce0.2Nd0.2Sm0.2Gd0.2Y0.2)2Zr2O7 High-Entropy Ceramics via Pressureless Two-Step Sintering
    Geng, Chang
    Li, Yu
    Li, Linlin
    Zhang, Shuai
    Lou, Chengguang
    Li, Wenjing
    Su, Xinghua
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (09): : 2915 - 2924
  • [38] High-entropy thermal barrier coating of rare-earth zirconate: A case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying
    Zhou, Lin
    Li, Fei
    Liu, Ji-Xuan
    Hu, Qing
    Bao, Weichao
    Wu, Yue
    Cao, Xueqiang
    Xu, Fangfang
    Zhang, Guo-Jun
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (15) : 5731 - 5739
  • [39] A novel high-entropy perovskite Ba(Zn 0.2 Yb 0.2 Ta 0.2 Nb 0.2 V 0.2 )O 3 ceramic with excellent Electromagnetic wave absorption properties
    Zhu, Henghai
    Peng, Yingbiao
    Chen, Han
    Li, Yang
    Zhou, Wei
    CERAMICS INTERNATIONAL, 2024, 50 (22) : 45064 - 45074
  • [40] (La0.2Y0.2Nd0.2Gd0.2Sr0.2)CrO3: A novel conductive porous high-entropy ceramic synthesized by the sol-gel method
    Zhang, Xuesong
    Xue, Liyan
    Yang, Fan
    Shao, Zhiheng
    Zhang, Hao
    Zhao, Zhigang
    Wang, Kaixian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 863