High-entropy (La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 ceramic: A novel dual-phase high-entropy ceramic

被引:0
|
作者
Li, Zhefeng [1 ]
Bai, Yu [1 ]
Hao, Jiajing [1 ]
Dong, Hongying [2 ]
Yang, Ting [3 ]
Gao, Yuanming [1 ]
Ma, Wen [1 ]
机构
[1] Inner Mongolia Univ Technol, Sch Mat Sci & Engn, Inner Mongolia Key Lab New Mat & Surface Engn, Hohhot 010051, Peoples R China
[2] Inner Mongolia Univ Technol, Sch Chem Engn, Hohhot 010051, Peoples R China
[3] Inner Mongolia Acad Sci & Technol, Hohhot 010020, Peoples R China
关键词
High-entropy ceramics; Solution precursor plasma spray; Thermal barrier coating (TBC); THERMAL-BARRIER COATINGS; RARE-EARTH-ZIRCONATE; CONDUCTIVITY;
D O I
10.1016/j.jeurceramsoc.2025.117361
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thermal barrier coating (TBC) materials, used to protect high-temperature components in gas turbines, require properties such as low thermal conductivity, resistance to sintering, and high-temperature stability. In this study, a novel defect fluorite-phase high-entropy zirconate powder(La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 was synthesized using solution precursor plasma spraying (SPPS), which exhibits high sphericity and uniform composition distribution. The(La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 ceramic bulk was sintered from SPPS prepared powder by pressureless sintering. The phase structures, thermal and mechanical properties of the samples were investigated using various techniques. The results indicated that the(La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 ceramic bulk has a defect fluorite-pyrochlore dual-phase structure and exhibits a low thermal conductivity about 1.09 W & sdot;m-1 & sdot;K-1 at 1400 degrees C. Compared to La2Zr2O7 ceramic,(La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 exhibits a slower grain growth rate of 3.6 x 10-4 mu m/h, it also displays superior mechanical properties, including high hardness (10.03 +/- 0.32 GPa) and fracture toughness KIC (1.04 +/- 0.17 MPa & sdot;m1/2). These outstanding thermal and mechanical properties make (La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 a highly promising candidate for TBC applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Structural evolution, synthesis mechanism and thermal conductivity of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy ceramic prepared by concurrent chemical coprecipitation method
    Zhang, Chang
    Liu, Huaifei
    Qie, Zhilin
    Hu, Zhenyi
    Xue, Jiahui
    Liu, Gonggang
    Wang, Yalei
    CERAMICS INTERNATIONAL, 2023, 49 (22) : 34826 - 34836
  • [22] Densification and grain growth in the flash sintering of high-entropy (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7 ceramics
    Li, Yu
    Geng, Chang
    Li, Linlin
    Wang, Jianglin
    Xia, Jun
    Su, Xinghua
    Zhao, Peng
    CERAMICS INTERNATIONAL, 2024, 50 (03) : 5676 - 5684
  • [23] Ultrafast densification of high-entropy oxide (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 by reactive flash sintering
    Mao, Hai-Rong
    Guo, Rui-Fen
    Cao, Yue
    Jin, Shen-Bao
    Qiu, Xiao-Ming
    Shen, Ping
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (04) : 2855 - 2860
  • [24] The irradiation resistance and mechanical properties of the high-entropy zirconate pyrochlore (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7
    Wang, Zezhen
    Zhou, Liangfu
    Liu, Chenguang
    Li, Yuhong
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2024, 549
  • [25] Highly anti-sintering and toughened pyrochlore (Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7 high-entropy ceramic for advanced thermal barrier coatings
    Luo, Xuewei
    Huang, Shuo
    Huang, Ruiqi
    Xu, Chunhui
    Hou, Shuen
    Jin, Hongyun
    CERAMICS INTERNATIONAL, 2023, 49 (14) : 23410 - 23416
  • [26] High-entropy(La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7thermalbarriercoatingmaterialwithsignificantlyenhancedfracturetoughness
    Donghui GUO
    Feifei ZHOU
    Baosheng XU
    Yiguang WANG
    You WANG
    Chinese Journal of Aeronautics, 2023, 36 (04) : 556 - 564
  • [27] Novel high-entropy BaCo0.2Zn0.2Ga0.2Zr0.2Y0.2O3-δ cathode for proton ceramic fuel cells
    Yang, Chenghao
    Li, Jin
    Hu, Shiming
    Pu, Jian
    Chi, Bo
    CERAMICS INTERNATIONAL, 2023, 49 (23) : 38331 - 38338
  • [28] High-entropy(Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 ceramic: A promising thermal barrier coating material
    Longkang Cong
    Wei Li
    Jiancheng Wang
    Shengyue Gu
    Shouyang Zhang
    JournalofMaterialsScience&Technology, 2022, 101 (06) : 199 - 204
  • [29] High-entropy transparent (Y0.2La0.2Gd0.2Yb0.2Dy0.2)2Zr2O7 ceramics as novel phosphor materials with multi-wavelength excitation and emission properties
    Han, Wenhan
    Ye, Yucheng
    Lu, Kailei
    Wu, Yucheng
    Wang, Haomin
    Huang, Zhangyi
    Qi, Jianqi
    Lu, Tiecheng
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (01) : 143 - 149
  • [30] High-entropy (La0.2Dy0.2Er0.2Yb0.2Y0.2)2Zr2O7 oxide, a potential thermal barrier coating material with photoluminescence property sensitive to pressure
    Du, Mingrun
    Xiao, Yuhan
    Yang, Xuelian
    Ma, Yu
    Han, Yingdong
    Li, Zepeng
    Wei, Tong
    Zou, Yunling
    CERAMICS INTERNATIONAL, 2024, 50 (05) : 8010 - 8016