Proof of some conjectural congruences involving Apery-like sequences

被引:0
|
作者
Mao, Guo-Shuai [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruences; Apery-like sequences; harmonic numbers; Bernoulli numbers; Euler numbers; BERNOULLI;
D O I
10.1080/10236198.2024.2446458
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we evaluate Sigma(p-1)(k=1) 1/k(3) (x k) (-1 -x k) and Sigma(p-1)(k=1) 1/k(2) (x k) (-1 -x k) modulo p and modulo p(2) respectively, and by these we prove some conjectures of Z.-H. Sun involving V-n(x) = Sigma(n)(k=0) (n k) (n + k k) (-1)(k) (x k) (-1 - x k) with n = p, p-1, 2p modulo p(4) for any prime p > 3 and x = -1/3,-1/4,-1/6.
引用
收藏
页数:18
相关论文
共 50 条