Deep Learning for Automated Ischemic Stroke Lesion Segmentation from Multi-spectral MRI

被引:0
|
作者
Dogru, Dilan [1 ]
Ozdemir, Mehmet Akif [1 ]
Guren, Onan [1 ]
机构
[1] Izmir Katip Celebi Univ, Dept Biomed Engn, Izmir, Turkiye
来源
32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024 | 2024年
关键词
Ischemic Stroke; Segmentation; MRI; Deep Learning; U-net; CNN;
D O I
10.23919/EUSIPCO63174.2024.10715216
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Stroke is one of the most prevalent diseases that cause long-term disability and mortality worldwide. Precisely detecting stroke lesions is crucial to diagnosing disease and planning potential treatments. Applications that assist specialists in automated lesion detection can play an important role in preventing time-consuming tasks. For quantitatively detecting strokes, specialists frequently use magnetic resonance imaging (MRI). In light of these considerations, we present a five-layer modified recurrent U-net model designed for the automated segmentation of ischemic stroke lesions in multi-spectral MRIs. The methodology implemented includes individually trained case MRI slices using the leave-one-out cross-validation (LOOCV) approach. The effectiveness of the developed model was evaluated by subject-wise metrics in comparison with the ground truth, yielding a very competitive average dice score (DSC) of 0.748.
引用
收藏
页码:1392 / 1396
页数:5
相关论文
共 50 条
  • [41] Deep Difference Representation Learning for Multi-spectral Imagery Change Detection
    Zhang, Hui
    Zhang, Puzhao
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND COMPUTER SCIENCE, 2016, 80 : 1008 - 1014
  • [42] Interinstitutional Portability of a Deep Learning Brain MRI Lesion Segmentation Algorithm
    Rauschecker, Andreas M.
    Gleason, Tyler J.
    Nedelec, Pierre
    Duong, Michael Tran
    Weiss, David A.
    Calabrese, Evan
    Colby, John B.
    Sugrue, Leo P.
    Rudie, Jeffrey D.
    Hess, Christopher P.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (01)
  • [43] Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI
    Liu, Liangliang
    Chen, Shaowu
    Zhang, Fuhao
    Wu, Fang-Xiang
    Pan, Yi
    Wang, Jianxin
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (11): : 6545 - 6558
  • [44] Deep Learning of Image Features from Unlabeled Data for Multiple Sclerosis Lesion Segmentation
    Yoo, Youngjin
    Brosch, Tom
    Traboulsee, Anthony
    Li, David K. B.
    Tam, Roger
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2014), 2014, 8679 : 117 - 124
  • [45] Intelligent multi-spectral IR image segmentation
    Lu, Thomas
    Luong, Andrew
    Heim, Stephen
    Patel, Maharshi
    Chen, Kang
    Chao, Tien-Hsin
    Chow, Edward
    Torres, Gilbert
    PATTERN RECOGNITION AND TRACKING XXVIII, 2017, 10203
  • [46] Deep-Learning Object Recognition in Multi-Spectral UAV imagery
    Knyaz, Vladimir
    Zheltov, Sergey
    OPTICS, PHOTONICS, AND DIGITAL TECHNOLOGIES FOR IMAGING APPLICATIONS V, 2018, 10679
  • [47] Deep learning-based multi-spectral identification of grey mould
    Giakoumoglou, Nikolaos
    Pechlivani, Eleftheria Maria
    Sakelliou, Athanasios
    Klaridopoulos, Christos
    Frangakis, Nikolaos
    Tzovaras, Dimitrios
    SMART AGRICULTURAL TECHNOLOGY, 2023, 4
  • [48] Accurate segmentation of neonatal brain MRI with deep learning
    Richter, Leonie
    Fetit, Ahmed E.
    FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [49] Stroke lesion localization in 3D MRI datasets with deep reinforcement learning
    Robertson, Samuel
    Tuladhar, Anup
    Rajashekar, Deepthi
    Forkert, Nils D.
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [50] Automated Ischemic Lesion Segmentation in MRI Mouse Brain Data after Transient Middle Cerebral Artery Occlusion
    Mulder, Inge A.
    Khmelinskii, Artem
    Dzyubachyk, Oleh
    de Jong, Sebastiaan
    Rieff, Nathalie
    Wermer, MariekeJ. H.
    Hoehn, Mathias
    Lelieveldt, Boudewijn P. F.
    van den Maagdenberg, Arn M. J. M.
    FRONTIERS IN NEUROINFORMATICS, 2017, 11