Deep Learning for Automated Ischemic Stroke Lesion Segmentation from Multi-spectral MRI

被引:0
|
作者
Dogru, Dilan [1 ]
Ozdemir, Mehmet Akif [1 ]
Guren, Onan [1 ]
机构
[1] Izmir Katip Celebi Univ, Dept Biomed Engn, Izmir, Turkiye
来源
32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024 | 2024年
关键词
Ischemic Stroke; Segmentation; MRI; Deep Learning; U-net; CNN;
D O I
10.23919/EUSIPCO63174.2024.10715216
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Stroke is one of the most prevalent diseases that cause long-term disability and mortality worldwide. Precisely detecting stroke lesions is crucial to diagnosing disease and planning potential treatments. Applications that assist specialists in automated lesion detection can play an important role in preventing time-consuming tasks. For quantitatively detecting strokes, specialists frequently use magnetic resonance imaging (MRI). In light of these considerations, we present a five-layer modified recurrent U-net model designed for the automated segmentation of ischemic stroke lesions in multi-spectral MRIs. The methodology implemented includes individually trained case MRI slices using the leave-one-out cross-validation (LOOCV) approach. The effectiveness of the developed model was evaluated by subject-wise metrics in comparison with the ground truth, yielding a very competitive average dice score (DSC) of 0.748.
引用
收藏
页码:1392 / 1396
页数:5
相关论文
共 50 条
  • [21] Deep learning for MRI lesion segmentation in rectal cancer
    Yang, Mingwei
    Yang, Miyang
    Yang, Lanlan
    Wang, Zhaochu
    Ye, Peiyun
    Chen, Chujie
    Fu, Liyuan
    Xu, Shangwen
    FRONTIERS IN MEDICINE, 2024, 11
  • [22] Semi-automated land/water segmentation of multi-spectral imagery
    Cook, Benjamin
    Graceffo, Stephanie
    OCEANS 2015 - MTS/IEEE WASHINGTON, 2015,
  • [23] Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation
    Zhang, Nan
    Ruan, Su
    Lebonvallet, Stephane
    Liao, Qingmin
    Zhu, Yuemin
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2011, 115 (02) : 256 - 269
  • [24] Early detection of Botrytis cinerea symptoms using deep learning multi-spectral image segmentation
    Giakoumoglou, Nikolaos
    Kalogeropoulou, Eleni
    Klaridopoulos, Christos
    Pechlivani, Eleftheria Maria
    Christakakis, Panagiotis
    Markellou, Emilia
    Frangakis, Nikolaos
    Tzovaras, Dimitrios
    SMART AGRICULTURAL TECHNOLOGY, 2024, 8
  • [25] Stroke Lesion Segmentation and Deep Learning: A Comprehensive Review
    Malik, Mishaim
    Chong, Benjamin
    Fernandez, Justin
    Shim, Vickie
    Kasabov, Nikola Kirilov
    Wang, Alan
    BIOENGINEERING-BASEL, 2024, 11 (01):
  • [26] Automated claustrum segmentation in human brain MRI using deep learning
    Li, Hongwei
    Menegaux, Aurore
    Schmitz-Koep, Benita
    Neubauer, Antonia
    Baeuerlein, Felix J. B.
    Shit, Suprosanna
    Sorg, Christian
    Menze, Bjoern
    Hedderich, Dennis
    HUMAN BRAIN MAPPING, 2021, 42 (18) : 5862 - 5872
  • [27] Deep learning techniques for the fully automated detection and segmentation of brain MRI
    Tamer, Ahmed
    Youssef, Ahmed
    Ibrahim, Mohammed
    Abd-El Aziz, Mostafa
    Hesham, Youssef
    Mohammed, Zeyad
    Eissa, M. M.
    Ahmed, Soha
    Khoriba, Ghada
    5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, : 310 - 315
  • [28] Automated Segmentation of Brain Tumor MRI Images Using Deep Learning
    Rajendran, Surendran
    Rajagopal, Suresh Kumar
    Thanarajan, Tamilvizhi
    Shankar, K.
    Kumar, Sachin
    Alsubaie, Najah M.
    Ishak, Mohamad Khairi
    Mostafa, Samih M.
    IEEE ACCESS, 2023, 11 : 64758 - 64768
  • [29] Semantic Segmentation on Multi-Spectral Images
    Aslantas, Veysel
    Toprak, Ahmet Nusret
    Elmaci, Mehmet
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [30] A DEEP SYMMETRY CONVNET FOR STROKE LESION SEGMENTATION
    Wang, Yanran
    Katsaggelos, Aggelos K.
    Wang, Xue
    Parrish, Todd B.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 111 - 115