Deep Learning for Automated Ischemic Stroke Lesion Segmentation from Multi-spectral MRI

被引:1
作者
Dogru, Dilan [1 ]
Ozdemir, Mehmet Akif [1 ]
Guren, Onan [1 ]
机构
[1] Izmir Katip Celebi Univ, Dept Biomed Engn, Izmir, Turkiye
来源
32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024 | 2024年
关键词
Ischemic Stroke; Segmentation; MRI; Deep Learning; U-net; CNN;
D O I
10.23919/EUSIPCO63174.2024.10715216
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Stroke is one of the most prevalent diseases that cause long-term disability and mortality worldwide. Precisely detecting stroke lesions is crucial to diagnosing disease and planning potential treatments. Applications that assist specialists in automated lesion detection can play an important role in preventing time-consuming tasks. For quantitatively detecting strokes, specialists frequently use magnetic resonance imaging (MRI). In light of these considerations, we present a five-layer modified recurrent U-net model designed for the automated segmentation of ischemic stroke lesions in multi-spectral MRIs. The methodology implemented includes individually trained case MRI slices using the leave-one-out cross-validation (LOOCV) approach. The effectiveness of the developed model was evaluated by subject-wise metrics in comparison with the ground truth, yielding a very competitive average dice score (DSC) of 0.748.
引用
收藏
页码:1392 / 1396
页数:5
相关论文
共 28 条
[1]  
Aboudi F, 2022, INT C CONTROL DECISI, P724, DOI [10.1109/CODIT55151.2022.9804030, 10.1109/CoDIT55151.2022.9804030]
[2]   Directed searching optimized texture based adaptive gamma correction (DSOTAGC) technique for medical image enhancement [J].
Acharya, Upendra Kumar ;
Kumar, Sandeep .
MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) :6943-6962
[3]  
Al attar FerasNadhimHasoon, 2022, Journal of Physics: Conference Series, DOI 10.1088/1742-6596/2318/1/012049
[4]   Recurrent residual U-Net for medical image segmentation [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Hasan, Mahmudul ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
[5]   Deep learning models for digital image processing: a review [J].
Archana, R. ;
Jeevaraj, P. S. Eliahim .
ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (01)
[6]   CT imaging selection in acute stroke [J].
Bouchez, Laurie ;
Sztajzel, Roman ;
Vargas, Maria Isabel ;
Machi, Paolo ;
Kulcsar, Zsolt ;
Poletti, Pierre-Alexandre ;
Pereira, Vitor Mendes ;
Lovblad, Karl-Olof .
EUROPEAN JOURNAL OF RADIOLOGY, 2017, 96 :153-161
[7]   Towards an Accurate MRI Acute Ischemic Stroke Lesion Segmentation Based on Bioheat Equation and U-Net Model [J].
Bousselham, Abdelmajid ;
Bouattane, Omar ;
Youssfi, Mohamed ;
Raihani, Abdelhadi .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2022, 2022
[8]   A Review On Image Segmentation Techniques In M.R.I. Brain Stroke [J].
Choudhary, Yashoda ;
Tivaskar, Suhas ;
Luharia, Anurag ;
Dhande, Rajasbala ;
Pathade, Aniket .
JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 :223-228
[9]   Acute and sub-acute stroke lesion segmentation from multimodal MRI [J].
Clerigues, Albert ;
Valverde, Sergi ;
Bernal, Jose ;
Freixenet, Jordi ;
Oliver, Arnau ;
Llado, Xavier .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 194
[10]   An automated in vitro wound healing microscopy image analysis approach utilizing U-net-based deep learning methodology [J].
Dogru, Dilan ;
Ozdemir, Gizem D. ;
Ozdemir, Mehmet A. ;
Ercan, Utku K. ;
Avsar, Nermin Topaloglu ;
Guren, Onan .
BMC MEDICAL IMAGING, 2024, 24 (01)