Deep Learning for Automated Ischemic Stroke Lesion Segmentation from Multi-spectral MRI

被引:0
|
作者
Dogru, Dilan [1 ]
Ozdemir, Mehmet Akif [1 ]
Guren, Onan [1 ]
机构
[1] Izmir Katip Celebi Univ, Dept Biomed Engn, Izmir, Turkiye
来源
32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024 | 2024年
关键词
Ischemic Stroke; Segmentation; MRI; Deep Learning; U-net; CNN;
D O I
10.23919/EUSIPCO63174.2024.10715216
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Stroke is one of the most prevalent diseases that cause long-term disability and mortality worldwide. Precisely detecting stroke lesions is crucial to diagnosing disease and planning potential treatments. Applications that assist specialists in automated lesion detection can play an important role in preventing time-consuming tasks. For quantitatively detecting strokes, specialists frequently use magnetic resonance imaging (MRI). In light of these considerations, we present a five-layer modified recurrent U-net model designed for the automated segmentation of ischemic stroke lesions in multi-spectral MRIs. The methodology implemented includes individually trained case MRI slices using the leave-one-out cross-validation (LOOCV) approach. The effectiveness of the developed model was evaluated by subject-wise metrics in comparison with the ground truth, yielding a very competitive average dice score (DSC) of 0.748.
引用
收藏
页码:1392 / 1396
页数:5
相关论文
共 50 条
  • [1] Ischemic Stroke Lesion Segmentation in Multi-spectral MR Images with Support Vector Machine Classifiers
    Maier, Oskar
    Wilms, Matthias
    von der Gablentz, Janina
    Kraemer, Ulrike
    Handels, Heinz
    MEDICAL IMAGING 2014: COMPUTER-AIDED DIAGNOSIS, 2014, 9035
  • [2] Automated Final Lesion Segmentation in Posterior Circulation Acute Ischemic Stroke Using Deep Learning
    Zoetmulder, Riaan
    Konduri, Praneeta R.
    Obdeijn, Iris, V
    Gavves, Efstratios
    Isgum, Ivana
    Majoie, Charles B. L. M.
    Dippel, Diederik W. J.
    Roos, Yvo B. W. E. M.
    Goyal, Mayank
    Mitchell, Peter J.
    Campbell, Bruce C., V
    Lopes, Demetrius K.
    Reimann, Gernot
    Jovin, Tudor G.
    Saver, Jeffrey L.
    Muir, Keith W.
    White, Phil
    Bracard, Serge
    Chen, Bailiang
    Brown, Scott
    Schonewille, Wouter J.
    van der Hoeven, Erik
    Puetz, Volker
    Marquering, Henk A.
    DIAGNOSTICS, 2021, 11 (09)
  • [3] Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation
    Zhang Y.
    Liu S.
    Li C.
    Wang J.
    Journal of Shanghai Jiaotong University (Science), 2022, 27 (01): : 99 - 111
  • [4] Towards Clinical Diagnosis: Automated Stroke Lesion Segmentation on Multi-Spectral MR Image Using Convolutional Neural Network
    Liu, Zhiyang
    Cao, Chen
    Ding, Shuxue
    Liu, Zhiang
    Han, Tong
    Liu, Sheng
    IEEE ACCESS, 2018, 6 : 57006 - 57016
  • [5] Predicting ischemic stroke risk from atrial fibrillation based on multi-spectral fundus images using deep learning
    Li, Hui
    Gao, Mengdi
    Song, Haiqing
    Wu, Xiao
    Li, Gang
    Cui, Yiwei
    Li, Yang
    Xie, Zhaoheng
    Ren, Qiushi
    Zhang, Haitao
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [6] Ischemic Stroke Lesion Segmentation by Analyzing MRI Images Using Deep Convolutional Neural Networks
    Joshi, Shubham
    Gore, Sonal
    HELIX, 2018, 8 (05): : 3721 - 3725
  • [7] Adaptive FCM with contextual constrains for segmentation of multi-spectral MRI
    He, R
    Datta, S
    Sajja, BR
    Mehta, M
    Narayana, PA
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1660 - 1663
  • [8] ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
    Maier, Oskar
    Menze, Bjoern H.
    von der Gablentz, Janina
    Hani, Levin
    Heinrich, Mattias P.
    Liebrand, Matthias
    Winzeck, Stefan
    Basit, Abdul
    Bentley, Paul
    Chen, Liang
    Christiaens, Daan
    Dutil, Francis
    Egger, Karl
    Feng, Chaolu
    Glocker, Ben
    Goetz, Michael
    Haeck, Tom
    Halme, Hanna-Leena
    Havaei, Mohammad
    Iftekharuddin, Khan M.
    Jodoin, Pierre-Marc
    Kamnitsas, Konstantinos
    Kellner, Elias
    Korvenoja, Antti
    Larochelle, Hugo
    Ledig, Christian
    Lee, Jia-Hong
    Maes, Frederik
    Mahmood, Qaiser
    Maier-Hein, Klaus H.
    McKinley, Richard
    Muschelli, John
    Pal, Chris
    Pei, Linmin
    Rangarajan, Janaki Raman
    Reza, Syed M. S.
    Robben, David
    Rueckert, Daniel
    Salli, Eero
    Suetens, Paul
    Wang, Ching-Wei
    Wilms, Matthias
    Kirschke, Jan S.
    Kraemer, Ulrike M.
    Muente, Thomas F.
    Schramme, Peter
    Wiest, Roland
    Handels, Heinz
    Reyes, Mauricio
    MEDICAL IMAGE ANALYSIS, 2017, 35 : 250 - 269
  • [9] Ischemic Stroke Lesion Core Segmentation from CT Perfusion Scans Using Attention ResUnet Deep Learning
    Alirr, Omar Ibrahim
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025,
  • [10] Automated segmentation of pediatric brain tumors based on multi-parametric MRI and deep learning
    Madhogarhia, Rachel
    Kazerooni, Anahita Fathi
    Arif, Sherjeel
    Ware, Jeffrey B.
    Familiar, Ariana M.
    Vidal, Lorenna
    Bagheri, Sina
    Anderson, Hannah
    Haldar, Debanjan
    Yagoda, Sophie
    Graves, Erin
    Spadola, Michael
    Yan, Rachel
    Dahmane, Nadia
    Sako, Chiharu
    Vossough, Arastoo
    Storm, Phillip
    Resnick, Adam
    Davatzikos, Christos
    Nabavizadeh, Ali
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033