High-accuracy state-of-charge fusion estimation of lithium-ion batteries by integrating the Extended Kalman Filter with feature-enhanced Random Forest

被引:0
|
作者
Zhao, Zhihui [1 ]
Kou, Farong [1 ]
Pan, Zhengniu [2 ]
Chen, Leiming [3 ]
Luo, Xi [1 ]
Yang, Tianxiang [1 ]
机构
[1] Xian Univ Sci & Technol, Sch Mech Engn, Xian 710054, Shaanxi, Peoples R China
[2] Guangxi Univ, Sch Phys Sci & Technol, Nanning 530004, Guangxi, Peoples R China
[3] Zhengzhou Univ Aeronaut, Sch Mat Sci & Engn, Zhengzhou 450046, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
State of charge fusion estimation; Maximal information coefficient; Random forest; EKF; EQUIVALENT-CIRCUIT MODELS;
D O I
10.1016/j.est.2025.116275
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Fusing data-driven techniques with model-based methods is a key focus in lithium-ion battery state-of-charge (SOC) estimation research. Previous studies have often utilized data-driven techniques to compensate for errors inherent in model-based methods. However, challenges such as feature acquisition, interpretability, and overfitting limit their effectiveness. This paper proposes a novel method for high-accuracy SOC estimation. Parameters of the dual polarization (DP) model are identified and utilized as feature inputs for Random Forest (RF). The suitability of these features is evaluated using maximal information coefficient and RF feature importance scoring. An enhanced RF model with seven feature inputs (RF-7F) significantly improves estimation accuracy. An innovative Extract Segment Fusion method integrates the Extended Kalman Filter (EKF) and RF-7F, resulting in a high-accuracy and robust SOC estimation approach termed EKF-RF-ESF (ERFE) method. Validation across five driving cycle tests (DST, FUDS, US06, BJDST, and NEDC) shows that ERFE achieves mean absolute errors (MAE) and root mean squared errors (RMSE) below 0.080 % and 0.107 %, respectively. Compared to EKF and RF-7F, ERFE reduces MAE by an average of 89.762 % and 49.279 %, and RMSE by an average of 87.673 % and 69.426 %, respectively. This method shows significant potential for application in electric vehicles and largescale energy storage systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] State-of-charge Estimation of Lithium-ion Batteries Using Extended Kalman Filter
    Rezoug, Mohamed Redha
    Taibi, Djamel
    Benaouadj, Mahdi
    2021 10TH INTERNATIONAL CONFERENCE ON POWER SCIENCE AND ENGINEERING (ICPSE 2021), 2021, : 98 - 103
  • [2] State-of-Charge Estimation of Lithium-ion Batteries using Extended Kalman filter and Unscented Kalman filter
    Jokic, Ivan
    Zecevic, Zarko
    Krstajic, Bozo
    2018 23RD INTERNATIONAL SCIENTIFIC-PROFESSIONAL CONFERENCE ON INFORMATION TECHNOLOGY (IT), 2018,
  • [3] eXogenous Kalman Filter for State-of-Charge Estimation in Lithium-Ion Batteries
    Hasan, Agus
    Skriver, Martin
    Johansen, Tor Arne
    2018 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), 2018, : 1403 - 1408
  • [4] State-of-charge estimation approach of lithium-ion batteries using an improved extended Kalman filter
    Yu, Xiaowei
    Wei, Jingwen
    Dong, Guangzhong
    Chen, Zonghai
    Zhang, Chenbin
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 5097 - 5102
  • [5] Outlier-Robust Extended Kalman Filter for State-of-Charge Estimation of Lithium-Ion Batteries
    Lee, Won Hyung
    Kim, Kwang-Ki K.
    IEEE ACCESS, 2023, 11 : 132766 - 132779
  • [6] State-of-charge estimation with adaptive extended Kalman filter and extended stochastic gradient algorithm for lithium-ion batteries
    Ye, Yuanmao
    Li, Zhenpeng
    Lin, Jingxiong
    Wang, Xiaolin
    JOURNAL OF ENERGY STORAGE, 2022, 47
  • [7] Revisiting the State-of-Charge Estimation for Lithium-Ion Batteries A METHODICAL INVESTIGATION OF THE EXTENDED KALMAN FILTER APPROACH
    Wang, Yebin
    Fang, Huazhen
    Zhou, Lei
    Wada, Toshihiro
    IEEE CONTROL SYSTEMS MAGAZINE, 2017, 37 (04): : 73 - 96
  • [8] State-of-Charge Estimation Method for Lithium-Ion Batteries Using Extended Kalman Filter With Adaptive Battery Parameters
    Yun, Jaejung
    Choi, Yeonho
    Lee, Jaehyung
    Choi, Seonggon
    Shin, Changseop
    IEEE ACCESS, 2023, 11 : 90901 - 90915
  • [9] Lithium-Ion Batteries State-of-Charge Estimation Basedon Interactive Multiple-Model Extended Kalman Filter
    Xia Xiaohu
    Wei Yun
    2016 22ND INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC), 2016, : 204 - 207
  • [10] An Adaptive Kalman Filter to Estimate State-of-Charge of Lithium-Ion Batteries
    Luo, Zhiliang
    Li, Yanjie
    Lou, Yunjiang
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 1227 - 1232