Recent advances in H2 purification and CO2 capture: Evolving from flat sheet to hollow fiber membranes

被引:3
作者
Teh, Jun Yi [1 ]
Yong, Wai Fen [1 ,2 ]
机构
[1] Xiamen Univ Malaysia, Sch Energy & Chem Engn, Selangor Darul Ehsan 43900, Malaysia
[2] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
来源
CARBON CAPTURE SCIENCE & TECHNOLOGY | 2024年 / 13卷
基金
中国国家自然科学基金;
关键词
Hollow fiber membranes; Mixed matrix membranes; Metal-organic frameworks; Cross-linking; Hydrogen separation; MIXED-MATRIX MEMBRANES; METAL-ORGANIC FRAMEWORKS; INTRINSIC MICROPOROSITY PIM-1; GAS SEPARATION PERFORMANCE; THERMAL CROSS-LINKING; INTERFACIAL POLYMERIZATION; HYDROGEN-PRODUCTION; REARRANGED POLYMER; MOLECULAR DESIGN; BLEND MEMBRANES;
D O I
10.1016/j.ccst.2024.100334
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydrogen (H2 ) production and demand have steadily increased, leading to a rise in carbon dioxide (CO2) emissions since fossil fuels are the current raw material for H2 production. Thin film composite (TFC) hollow fiber membranes have become significant in H2 purification and CO2 capture, playing a critical role in developing next- generation fuels and supporting the United Nations Sustainable Development Goal 7 (SDG 7) - Affordable and Clean Energy, with the goal of providing universal access to clean, advanced, and renewable energy for all. However, the polymeric selective layer of TFC membranes faces a trade-off between permeability and selectivity, as well as challenges including CO2 plasticization and physical aging. Additionally, H2/CO2 separation remains particularly challenging because H2 , being diffusivity-selective, permeates more quickly through the membrane due to its smaller molecular size and higher kinetic energy, while CO2, being solubility-selective, has a high affinity for dissolving in most polymeric membranes. Herein, this review provides an in-depth exploration of innovative modification strategies designed to overcome these challenges in glassy polymeric membranes and enhance H2 separation performance in the recent 10 years. Various nanofillers, such as metal-organic frameworks (MOFs) such as University of Oslo (UiO), Materials Institute Lavoisier (MILs), and Zeolitic Imidazolate Frameworks (ZIFs), have shown remarkable potential in boosting gas separation capabilities due to their superior compatibility with polymer matrices and tunable properties. The review also explores different types of hollow fiber membranes, including single layer, dual-layer, and TFC, alongside fabrication techniques like interfacial polymerization and dip-coating. Critically, the analysis highlights cutting-edge strategies to improve membrane performance, such as (i) thermal cross-linking, (ii) chemical cross-linking, (iii) ultraviolet (UV) cross-linking, (iv) polymer blends, and (v) modified fillers, along with their objectives and expected outcome. Furthermore, the review spotlights breakthroughs in H2/CO2, H2 /CH4, and H2 /N2 separation technologies, emphasizing the critical need for continued innovation to drive sustainable H2 production and meet the growing clean energy demand.
引用
收藏
页数:40
相关论文
共 192 条
[1]   Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives [J].
Ahmad, Mohd Zamidi ;
Navarro, Marta ;
Lhotka, Miloslav ;
Zornoza, Beatriz ;
Tellez, Carlos ;
de Vos, Wiebe M. ;
Benes, Nieck E. ;
Konnertz, Nora M. ;
Visser, Tymen ;
Semino, Rocio ;
Maurin, Guillaume ;
Fila, Vlastimil ;
Coronas, Joaquin .
JOURNAL OF MEMBRANE SCIENCE, 2018, 558 :64-77
[2]   Hydrogen selective membranes: A review of palladium-based dense metal membranes [J].
Al-Mufachi, N. A. ;
Rees, N. V. ;
Steinberger-Wilkens, R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 47 :540-551
[3]   Mixed matrix membranes for H2/CO2 gas separation- a critical review [J].
Al-Rowaili, Fayez Nasir ;
Khaled, Mazen ;
Jamal, Aqil ;
Zahid, Umer .
FUEL, 2023, 333
[4]   Adsorptive Separation of Methane from Carbon Dioxide by Zeolite@ZIF Composite [J].
Aldrich, Jack H. ;
Rousselo, Savannah M. ;
Yang, Melissa L. ;
Araiza, Stephanie M. ;
Tian, Fangyuan .
ENERGY & FUELS, 2019, 33 (01) :348-355
[5]   High gas permeance in CO2-selective thin film composite membranes from bis(phenyl)fluorene-containing blends with PIM-1 [J].
Almansour, Faiz ;
Foster, Andrew B. ;
Ameen, Ahmed W. ;
Mohsenpour, Sajjad ;
Budd, Peter M. ;
Gorgojo, Patricia .
JOURNAL OF MEMBRANE SCIENCE, 2024, 699
[6]   Bromination/debromination-induced thermal crosslinking of 6FDA-Durene for aggressive gas separations [J].
An, Heseong ;
Lee, Albert S. ;
Kammakakam, Irshad ;
Hwang, Seung Sang ;
Kim, Jeong-Hoon ;
Lee, Jung-Hyun ;
Lee, Jong Suk .
JOURNAL OF MEMBRANE SCIENCE, 2018, 545 :358-366
[7]   Metal-organic framework/graphene oxide composite fillers in mixed-matrix membranes for CO2 separation [J].
Anastasiou, Stavroula ;
Bhoria, Nidhika ;
Pokhrel, Jeewan ;
Reddy, K. Suresh Kumar ;
Srinivasakannan, C. ;
Wang, Kean ;
Karanikolos, Georgios N. .
MATERIALS CHEMISTRY AND PHYSICS, 2018, 212 :513-522
[8]  
[Anonymous], 2023, Global Hydrogen Review 2023
[9]  
Baker R.W., 2012, MEMBRANE TECHNOLOGY, DOI DOI 10.1002/0470020393
[10]   Gas Separation Membrane Materials: A Perspective [J].
Baker, Richard W. ;
Low, Bee Ting .
MACROMOLECULES, 2014, 47 (20) :6999-7013