Deep Learning and X-Ray Imaging Innovations for Pneumonia Infection Diagnosis: Introducing DeepPneuNet

被引:2
作者
Chakraborty, Sanjay [1 ,2 ]
Nag, Tirthajyoti [3 ]
Pandey, Saroj Kumar [4 ]
Ghosh, Jayasree [3 ]
Dey, Lopamudra [5 ]
机构
[1] Linkoping Univ, Dept Comp & Informat Sci IDA, REAL, AIICS, Linkoping, Sweden
[2] Techno Int New Town, Dept Comp Sci & Engn, Kolkata, India
[3] JIS Univ, Dept Comp Sci & Engn, Kolkata, India
[4] GLA Univ, Dept Comp Engn & Applicat, Mathura, India
[5] Linkoping Univ, Dept Biomed & Clin Sci BKV, Linkoping, Sweden
关键词
deep learning; DeepPneuNet; diagnosis prediction; infections; pneumonia; x-ray imaging; TUBERCULOSIS;
D O I
10.1111/coin.70029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to develop a new deep learning model (DeepPneuNet) and evaluate its performance in predicting Pneumonia infection diagnosis based on patients' chest x-ray images. We have collected 5856 chest x-ray images that are labeled as either "pneumonia" or "normal" from a public forum. Before applying the DeepPneuNet model, a necessary feature extraction and feature mapping have been done on the input images. Conv2D layers with a 1 x 1 kernel size are followed by ReLU activation functions to make up the model. These layers are in charge of recognizing important patterns and features in the images. A MaxPooling 2D procedure is applied to minimize the spatial size of the feature maps after every two Conv2D layers. The sparse categorical cross-entropy loss function trains the model, and the Adam optimizer with a learning rate of 0.001 is used to optimize it. The DeepPneuNet provides 90.12% accuracy for diagnosis of the Pneumonia infection for a set of real-life test images. With 9,445,586 parameters, the DeepPneuNet model exhibits excellent parameter efficiency. DeepPneuNet is a more lightweight and computationally efficient alternative when compared to the other pre-trained models. We have compared accuracies for predicting Pneumonia diagnosis of our proposed DeepPneuNet model with some state-of-the-art deep learning models. The proposed DeepPneuNet model is more advantageous than the existing state-of-the-art learning models for Pneumonia diagnosis with respect to accuracy, precision, recall, F-score, training parameters, and training execution time.
引用
收藏
页数:19
相关论文
共 43 条
[41]  
Zhang Z., 2019, IEEE Access, V7, P170389
[42]  
Zhao H, 2018, Arxiv, DOI arXiv:1511.08861
[43]   Deep learning analysis of breast MRIs for prediction of occult invasive disease in ductal carcinoma in situ [J].
Zhu, Zhe ;
Harowicz, Michael ;
Zhang, Jun ;
Saha, Ashirbani ;
Grimm, Lars J. ;
Hwang, E. Shelley ;
Mazurowski, Maciej A. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 115