Sainsc: A Computational Tool for Segmentation-Free Analysis of In Situ Capture Data

被引:0
作者
Mueller-Boetticher, Niklas [1 ,2 ]
Tiesmeyer, Sebastian [1 ,2 ]
Eils, Roland [1 ,2 ,3 ,4 ]
Ishaque, Naveed [1 ]
机构
[1] Charite Univ Med Berlin, Ctr Digital Hlth, Berlin Inst Hlth, Charitepl 1, D-10117 Berlin, Germany
[2] Free Univ Berlin, Dept Math & Comp Sci, Arnimallee 14, D-14195 Berlin, Germany
[3] Heidelberg Univ, Heidelberg Univ Hosp, Hlth Data Sci Unit, Neuenheimer Feld 267, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, BioQuant, Neuenheimer Feld 267, D-69120 Heidelberg, Germany
来源
SMALL METHODS | 2024年
关键词
bioinformatics; cell type annotation; in situ capture spatial transcriptomics; segmentation-free; spatial biology; spatial omics; CELL-TYPES; TRANSCRIPTOMICS; COLLAGEN; TISSUE; DNA; SEQ;
D O I
10.1002/smtd.202401123
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spatially resolved transcriptomics (SRT) has become the method of choice for characterising the complexity of biomedical tissue samples. Until recently, scientists were restricted to SRT methods that can profile a limited set of target genes at high spatial resolution or transcriptome-wide but at a low spatial resolution. Through recent developments, there are now methods that offer both subcellular spatial resolution and full transcriptome coverage. However, utilising these new methods' high spatial resolution and gene resolution remains elusive due to several factors, including low detection efficiency and high computational costs. Here, we present Sainsc (Segmentation-free analysis of in situ capture data), which combines a cell-segmentation-free approach with efficient data processing of transcriptome-wide nanometre-resolution spatial data. Sainsc can generate cell-type maps with accurate cell-type assignment at the nanometre scale, together with corresponding maps of the assignment scores that facilitate interpretation of the local confidence of cell-type assignment. We demonstrate its utility and accuracy for different tissues and technologies. Compared to other methods, Sainsc requires lower computational resources and has scalable performance, enabling interactive data exploration. Sainsc is compatible with common data analysis frameworks and is available as open-source software in multiple programming languages.
引用
收藏
页数:11
相关论文
共 45 条
  • [41] Yan L., 2023, BIOINFORMATICS, V39
  • [42] A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain
    Yao, Zizhen
    van Velthoven, Cindy T. J.
    Kunst, Michael
    Zhang, Meng
    Mcmillen, Delissa
    Lee, Changkyu
    Jung, Won
    Goldy, Jeff
    Abdelhak, Aliya
    Aitken, Matthew
    Baker, Katherine
    Baker, Pamela
    Barkan, Eliza
    Bertagnolli, Darren
    Bhandiwad, Ashwin
    Bielstein, Cameron
    Bishwakarma, Prajal
    Campos, Jazmin
    Carey, Daniel
    Casper, Tamara
    Chakka, Anish Bhaswanth
    Chakrabarty, Rushil
    Chavan, Sakshi
    Chen, Min
    Clark, Michael
    Close, Jennie
    Crichton, Kirsten
    Daniel, Scott
    Divalentin, Peter
    Dolbeare, Tim
    Ellingwood, Lauren
    Fiabane, Elysha
    Fliss, Timothy
    Gee, James
    Gerstenberger, James
    Glandon, Alexandra
    Gloe, Jessica
    Gould, Joshua
    Gray, James
    Guilford, Nathan
    Guzman, Junitta
    Hirschstein, Daniel
    Ho, Windy
    Hooper, Marcus
    Huang, Mike
    Hupp, Madie
    Jin, Kelly
    Kroll, Matthew
    Lathia, Kanan
    Leon, Arielle
    [J]. NATURE, 2023, 624 (7991) : 317 - 332
  • [43] A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation
    Yao, Zizhen
    van Velthoven, Cindy T. J.
    Thuc Nghi Nguyen
    Goldy, Jeff
    Sedeno-Cortes, Adriana E.
    Baftizadeh, Fahimeh
    Bertagnolli, Darren
    Casper, Tamara
    Chiang, Megan
    Crichton, Kirsten
    Ding, Song-Lin
    Fong, Olivia
    Garren, Emma
    Glandon, Alexandra
    Gouwens, Nathan W.
    Gray, James
    Graybuck, Lucas T.
    Hawrylycz, Michael J.
    Hirschstein, Daniel
    Kroll, Matthew
    Lathia, Kanan
    Lee, Changkyu
    Levi, Boaz
    McMillen, Delissa
    Mok, Stephanie
    Thanh Pham
    Ren, Qingzhong
    Rimorin, Christine
    Shapovalova, Nadiya
    Sulc, Josef
    Sunkin, Susan M.
    Tieu, Michael
    Torkelson, Amy
    Tung, Herman
    Ward, Katelyn
    Dee, Nick
    Smith, Kimberly A.
    Tasic, Bosiljka
    Zeng, Hongkui
    [J]. CELL, 2021, 184 (12) : 3222 - +
  • [44] Systematic comparison of sequencing-based spatial transcriptomic methods
    You, Yue
    Fu, Yuting
    Li, Lanxiang
    Zhang, Zhongmin
    Jia, Shikai
    Lu, Shihong
    Ren, Wenle
    Liu, Yifang
    Xu, Yang
    Liu, Xiaojing
    Jiang, Fuqing
    Peng, Guangdun
    Sampath Kumar, Abhishek
    Ritchie, Matthew E.
    Liu, Xiaodong
    Tian, Luyi
    [J]. NATURE METHODS, 2024, 21 (09) : 1743 - 1754
  • [45] Molecularly defined and spatially resolved cell atlas of the whole mouse brain
    Zhang, Meng
    Pan, Xingjie
    Jung, Won
    Halpern, Aaron R.
    Eichhorn, Stephen W.
    Lei, Zhiyun
    Cohen, Limor
    Smith, Kimberly A.
    Tasic, Bosiljka
    Yao, Zizhen
    Zeng, Hongkui
    Zhuang, Xiaowei
    [J]. NATURE, 2023, 624 (7991) : 343 - 354