Sainsc: A Computational Tool for Segmentation-Free Analysis of In Situ Capture Data

被引:0
作者
Mueller-Boetticher, Niklas [1 ,2 ]
Tiesmeyer, Sebastian [1 ,2 ]
Eils, Roland [1 ,2 ,3 ,4 ]
Ishaque, Naveed [1 ]
机构
[1] Charite Univ Med Berlin, Ctr Digital Hlth, Berlin Inst Hlth, Charitepl 1, D-10117 Berlin, Germany
[2] Free Univ Berlin, Dept Math & Comp Sci, Arnimallee 14, D-14195 Berlin, Germany
[3] Heidelberg Univ, Heidelberg Univ Hosp, Hlth Data Sci Unit, Neuenheimer Feld 267, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, BioQuant, Neuenheimer Feld 267, D-69120 Heidelberg, Germany
来源
SMALL METHODS | 2024年
关键词
bioinformatics; cell type annotation; in situ capture spatial transcriptomics; segmentation-free; spatial biology; spatial omics; CELL-TYPES; TRANSCRIPTOMICS; COLLAGEN; TISSUE; DNA; SEQ;
D O I
10.1002/smtd.202401123
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spatially resolved transcriptomics (SRT) has become the method of choice for characterising the complexity of biomedical tissue samples. Until recently, scientists were restricted to SRT methods that can profile a limited set of target genes at high spatial resolution or transcriptome-wide but at a low spatial resolution. Through recent developments, there are now methods that offer both subcellular spatial resolution and full transcriptome coverage. However, utilising these new methods' high spatial resolution and gene resolution remains elusive due to several factors, including low detection efficiency and high computational costs. Here, we present Sainsc (Segmentation-free analysis of in situ capture data), which combines a cell-segmentation-free approach with efficient data processing of transcriptome-wide nanometre-resolution spatial data. Sainsc can generate cell-type maps with accurate cell-type assignment at the nanometre scale, together with corresponding maps of the assignment scores that facilitate interpretation of the local confidence of cell-type assignment. We demonstrate its utility and accuracy for different tissues and technologies. Compared to other methods, Sainsc requires lower computational resources and has scalable performance, enabling interactive data exploration. Sainsc is compatible with common data analysis frameworks and is available as open-source software in multiple programming languages.
引用
收藏
页数:11
相关论文
共 45 条
  • [31] Julia for biologists
    Roesch, Elisabeth
    Greener, Joe G.
    MacLean, Adam L.
    Nassar, Huda
    Rackauckas, Christopher
    Holy, Timothy E.
    Stumpf, Michael P. H.
    [J]. NATURE METHODS, 2023, 20 (05) : 655 - 664
  • [32] Salas SM, 2023, bioRxiv, DOI [10.1101/2023.02.13.528102, 10.1101/2023.02.13.528102, DOI 10.1101/2023.02.13.528102]
  • [33] Schott M., 2024, Cell, V184, P3953
  • [34] Spatial atlas of the mouse central nervous system at molecular resolution
    Shi, Hailing
    He, Yichun
    Zhou, Yiming
    Huang, Jiahao
    Maher, Kamal
    Wang, Brandon
    Tang, Zefang
    Luo, Shuchen
    Tan, Peng
    Wu, Morgan
    Lin, Zuwan
    Ren, Jingyi
    Thapa, Yaman
    Tang, Xin
    Chan, Ken Y.
    Deverman, Benjamin E.
    Shen, Hao
    Liu, Albert
    Liu, Jia
    Wang, Xiao
    [J]. NATURE, 2023, 622 (7983) : 552 - +
  • [35] FICTURE: scalable segmentation-free analysis of submicron-resolution spatial transcriptomics
    Si, Yichen
    Lee, ChangHee
    Hwang, Yongha
    Yun, Jeong H.
    Cheng, Weiqiu
    Cho, Chun-Seok
    Quiros, Miguel
    Nusrat, Asma
    Zhang, Weizhou
    Jun, Goo
    Zollner, Sebastian
    Lee, Jun Hee
    Kang, Hyun Min
    [J]. NATURE METHODS, 2024, 21 (10) : 1843 - 1854
  • [36] Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
    Stahl, Patrik L.
    Salmen, Fredrik
    Vickovic, Sanja
    Lundmark, Anna
    Navarro, Jose Fernandez
    Magnusson, Jens
    Giacomello, Stefania
    Asp, Michaela
    Westholm, Jakub O.
    Huss, Mikael
    Mollbrink, Annelie
    Linnarsson, Sten
    Codeluppi, Simone
    Borg, Ake
    Ponten, Fredrik
    Costea, Paul Igor
    Sahlen, Pelin
    Mulder, Jan
    Bergmann, Olaf
    Lundeberg, Joakim
    Frisen, Jonas
    [J]. SCIENCE, 2016, 353 (6294) : 78 - 82
  • [37] Taylor C., 1997, Vistas Astron, V41, P411, DOI DOI 10.1016/S0083-6656(97)00046-9
  • [38] SSAM-lite: A Light-Weight Web App for Rapid Analysis of Spatially Resolved Transcriptomics Data
    Tiesmeyer, Sebastian
    Sahay, Shashwat
    Mueller-Boetticher, Niklas
    Eils, Roland
    Mackowiak, Sebastian D.
    Ishaque, Naveed
    [J]. FRONTIERS IN GENETICS, 2022, 13
  • [39] Virshup I., 2021, bioRxiv, DOI DOI 10.1101/2021.12.16.473007
  • [40] An introduction to spatial transcriptomics for biomedical research
    Williams, Cameron G.
    Lee, Hyun Jae
    Asatsuma, Takahiro
    Vento-Tormo, Roser
    Haque, Ashraful
    [J]. GENOME MEDICINE, 2022, 14 (01)