PHOTON-LIMITED BLIND IMAGE DECONVOLUTION WITH HEAVY-TAILED PRIORS ON KERNEL AND NOISE

被引:0
作者
Kong, Linghai [1 ]
Wei, Suhua [1 ]
机构
[1] Inst Appl Phys & Computat Math, POB 8009, Beijing 100094, Peoples R China
基金
美国国家科学基金会;
关键词
Poisson-Square Cauchy noise; combined square Cauchy-Gaussian blur; fractional-order total variation; multi-convex; blind image deconvolution; COORDINATE DESCENT METHOD; VARIATIONAL APPROACH; TOMOGRAPHIC RECONSTRUCTION; RESTORATION; REGULARIZATION; CONVERGENCE; ALGORITHM; DIFFUSION; POISSON;
D O I
10.3934/ipi.2025006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new blind image deconvolution method is proposed for flash Xray radiography, with aims to surmount deficiencies of traditional approaches that do not account for complicated physics of image deterioration. Mixture distributions with heavy-tailed very impulsive component are assumed to characterize the noise and blur in radiographs. Under these assumptions, an optimization model is derived by integrating an infimal convolution likelihood into a joint maximum a posteriori estimation, where a Kullback-Leibler divergence based probability density function is proposed to formulate the prior knowledge of the kernel. Moreover, local estimation to the blurry image and expectation maximization for estimating the parameters of the kernel are utilized to gain multi-convexity and computability. To solve the optimization problem numerically, a block coordinate descent based algorithm is proposed, in which majorization-minimization algorithm and Barzilai-Borwein estimate are incorporated with alternating direction method of multipliers to achieve computational efficiency. A series of experiments with synthesized and real noisy blurry images validate the performance of the proposed method, especially in quality and adaptivity.
引用
收藏
页数:33
相关论文
共 94 条
  • [1] A Penalization Approach for Tomographic Reconstruction of Binary Axially Symmetric Objects
    Abraham, R.
    Bergounioux, M.
    Trelat, E.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2008, 58 (03) : 345 - 371
  • [2] SIGNAL AND IMAGE-RESTORATION USING SHOCK FILTERS AND ANISOTROPIC DIFFUSION
    ALVAREZ, L
    MAZORRA, L
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) : 590 - 605
  • [3] [Anonymous], 2021, Introduction to Inverse Problems in Imaging, DOI [10.1201/9781003032755, DOI 10.1201/9781003032755]
  • [4] Variational Bayesian Blind Deconvolution Using a Total Variation Prior
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (01) : 12 - 26
  • [5] Fractional-order anisotropic diffusion for image denoising
    Bai, Jian
    Feng, Xiang-Chu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (10) : 2492 - 2502
  • [6] THE BES DETECTOR
    BAI, JZ
    BIAN, Q
    CHEN, GM
    CHEN, LJ
    CHEN, SN
    CHEN, YQ
    CHEN, ZQ
    CHI, YK
    CUI, HC
    CUI, XZ
    DENG, SS
    DENG, YW
    DING, HL
    DONG, BZ
    DONG, XS
    DU, X
    DU, ZZ
    FENG, C
    FENG, Z
    FU, ZS
    GAO, CS
    GAO, ML
    GAO, SQ
    GAO, WX
    GAO, YN
    GU, SD
    GU, WX
    GUAN, YZ
    GUO, HF
    GUO, YN
    GUO, YY
    HAN, SW
    HAN, Y
    HAO, W
    HE, J
    HE, KR
    HE, MJ
    HOU, XJ
    HU, GY
    HU, JS
    HU, JW
    HUANG, DQ
    HUANG, YZ
    JIA, QP
    JIANG, CH
    JU, Q
    LAI, YF
    LANG, PF
    LI, DS
    LI, F
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1994, 344 (02) : 319 - 334
  • [7] BLIND RESTORATION OF IMAGES DEGRADED WITH MIXED POISSON-GAUSSIAN NOISE WITH APPLICATION IN TRANSMISSION ELECTRON MICROSCOPY
    Bajic, Buda
    Lindblad, Joakim
    Sladoje, Natasa
    [J]. 2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 123 - 127
  • [8] Bar L, 2004, LECT NOTES COMPUT SC, V3022, P166
  • [9] Barrett H.H., 1981, RADIOLOGICAL IMAGING
  • [10] Variational Methods for Tomographic Reconstruction with Few Views
    Bergounioux, Maitine
    Abraham, Isabelle
    Abraham, Romain
    Carlier, Guillaume
    Le Pennec, Erwan
    Trelat, Emmanuel
    [J]. MILAN JOURNAL OF MATHEMATICS, 2018, 86 (02) : 157 - 200