Maize Endophytic Plant Growth-Promoting Bacteria Peribacillus simplex Can Alleviate Plant Saline and Alkaline Stress

被引:1
|
作者
Li, Guoliang [1 ]
Shi, Miaoxin [1 ,2 ]
Wan, Wenhao [2 ]
Wang, Zongying [2 ]
Ji, Shangwei [2 ]
Yang, Fengshan [3 ,4 ,5 ]
Jin, Shumei [2 ]
Zhang, Jianguo [1 ]
机构
[1] Heilongjiang Acad Agr Sci, Harbin 150086, Peoples R China
[2] Northeast Forestry Univ, Coll Life Sci, Key Lab Saline Alkali Vegetat Ecol Restorat, Minist Educ, Harbin 150040, Peoples R China
[3] Heilongjiang Univ, Engn Res Ctr Agr Microbiol Technol, Minist Educ, Harbin 150080, Peoples R China
[4] Heilongjiang Univ, Heilongjiang Prov Key Lab Ecol Restorat & Resource, Harbin 150080, Peoples R China
[5] Heilongjiang Univ, Coll Heilongjiang Prov, Coll Life Sci, Key Lab Mol Biol, Harbin 150080, Peoples R China
关键词
endophytic bacteria; maize; <italic>Peribacillus simplex</italic>; plant growth promote; saline and alkaline stress; RHIZOBACTERIA;
D O I
10.3390/ijms252010870
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Soil salinization is currently one of the main abiotic stresses that restrict plant growth. Plant endophytic bacteria can alleviate abiotic stress. The aim of the current study was to isolate, characterize, and assess the plant growth-promoting and saline and alkaline stress-alleviating traits of Peribacillus simplex M1 (P. simplex M1) isolates from maize. One endophytic bacterial isolate, named P. simplex M1, was selected from the roots of maize grown in saline-alkali soil. The P. simplex M1 genome sequence analysis of the bacteria with a length of 5.8 Mbp includes about 700 genes that promote growth and 16 antioxidant activity genes that alleviate saline and alkaline stress. P. simplex M1 can grow below 400 mM NaHCO3 on the LB culture medium; The isolate displayed multiple plant growth-stimulating features, such as nitrogen fixation, produced indole-3-acetic acid (IAA), and siderophore production. This isolate had a positive effect on the resistance to salt of maize in addition to the growth. P. simplex M1 significantly promoted seed germination by enhancing seed vigor in maize whether under normal growth or NaHCO3 stress conditions. The seeds with NaHCO3 treatment exhibited higher reactive oxygen species (ROS) levels than the maize in P. simplex M1 inoculant on maize. P. simplex M1 can colonize the roots of maize. The P. simplex M1 inoculant plant increased chlorophyll in leaves, stimulated root and leaf growth, increased the number of lateral roots and root dry weight, increased the length and width of the blades, and dry weight of the blades. The application of inoculants can significantly reduce the content of malondialdehyde (MDA) and increase the activity of plant antioxidant enzymes (Catalase (CAT), Superoxide Dismutase (SOD), and Peroxidase (POD)), which may thereby improve maize resistance to saline and alkaline stress. Conclusion: P. simplex M1 isolate belongs to plant growth-promoting bacteria by having high nitrogen concentration, indoleacetic acid (IAA), and siderophore, and reducing the content of ROS through the antioxidant system to alleviate salt alkali stress. This study presents the potential application of P. simplex M1 as a biological inoculant to promote plant growth and mitigate the saline and alkaline effects of maize and other crops.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Identification of Plant Growth-promoting Rhizobacteria with the Ability to Alleviate Drought Stress in Floriculture Crops
    Nordstedt, Nathan P.
    Jones, Michelle L.
    Taylor, Christopher G.
    HORTSCIENCE, 2018, 53 (09) : S187 - S188
  • [42] Impact of soybean-associated plant growth-promoting bacteria on plant growth modulation under alkaline soil conditions
    Roriz, Mariana
    Pereira, Sofia I. A.
    Castro, Paula M. L.
    Carvalho, Susana M. P.
    Vasconcelos, Marta W.
    HELIYON, 2023, 9 (05)
  • [43] A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria
    Glick, BR
    Penrose, DM
    Li, JP
    JOURNAL OF THEORETICAL BIOLOGY, 1998, 190 (01) : 63 - 68
  • [44] Contribution of plant growth-promoting endophytic bacteria from hyperaccumulator to non-host plant zinc nutrition and health
    Li, Zhesi
    Huang, Lukuan
    Chen, Xuan
    Liu, Qizhen
    Liu, Yaru
    Liu, Chanjuan
    Yu, Chao
    Feng, Ying
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2025, 27 (01) : 23 - 35
  • [45] Thermal and salt stress effects on the survival of plant growth-promoting bacteria Azospirillum brasilense in inoculants for maize cultivation
    da Cunha, Elisandra Triches
    Pedrolo, Ana Marina
    Arisi, Ana Carolina Maisonnave
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2024, 104 (09) : 5360 - 5367
  • [46] Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize
    Bradáčová K.
    Weber N.F.
    Morad-Talab N.
    Asim M.
    Imran M.
    Weinmann M.
    Neumann G.
    Chemical and Biological Technologies in Agriculture, 3 (1)
  • [47] Metabolite profiling reveals a complex response of plants to application of plant growth-promoting endophytic bacteria
    Mahmood, Ahmad
    Kataoka, Ryota
    MICROBIOLOGICAL RESEARCH, 2020, 234
  • [48] Recent progress in the role of seed endophytic bacteria as plant growth-promoting microorganisms and biocontrol agents
    Guha, Titir
    Biswas, Suparna Mandal
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2024, 40 (07):
  • [49] Plant growth-promoting abilities and community structure of culturable endophytic bacteria from the fruit of an invasive plant Xanthium italicum
    Caixia Han
    Nigora Kuchkarova
    Shixing Zhou
    Chenpeng Zhang
    Kai Shi
    Ting Zou
    Hua Shao
    3 Biotech, 2021, 11
  • [50] Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling
    H. Q. Li
    X. W. Jiang
    Russian Journal of Plant Physiology, 2017, 64 : 235 - 241