Maize Endophytic Plant Growth-Promoting Bacteria Peribacillus simplex Can Alleviate Plant Saline and Alkaline Stress

被引:1
|
作者
Li, Guoliang [1 ]
Shi, Miaoxin [1 ,2 ]
Wan, Wenhao [2 ]
Wang, Zongying [2 ]
Ji, Shangwei [2 ]
Yang, Fengshan [3 ,4 ,5 ]
Jin, Shumei [2 ]
Zhang, Jianguo [1 ]
机构
[1] Heilongjiang Acad Agr Sci, Harbin 150086, Peoples R China
[2] Northeast Forestry Univ, Coll Life Sci, Key Lab Saline Alkali Vegetat Ecol Restorat, Minist Educ, Harbin 150040, Peoples R China
[3] Heilongjiang Univ, Engn Res Ctr Agr Microbiol Technol, Minist Educ, Harbin 150080, Peoples R China
[4] Heilongjiang Univ, Heilongjiang Prov Key Lab Ecol Restorat & Resource, Harbin 150080, Peoples R China
[5] Heilongjiang Univ, Coll Heilongjiang Prov, Coll Life Sci, Key Lab Mol Biol, Harbin 150080, Peoples R China
关键词
endophytic bacteria; maize; <italic>Peribacillus simplex</italic>; plant growth promote; saline and alkaline stress; RHIZOBACTERIA;
D O I
10.3390/ijms252010870
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Soil salinization is currently one of the main abiotic stresses that restrict plant growth. Plant endophytic bacteria can alleviate abiotic stress. The aim of the current study was to isolate, characterize, and assess the plant growth-promoting and saline and alkaline stress-alleviating traits of Peribacillus simplex M1 (P. simplex M1) isolates from maize. One endophytic bacterial isolate, named P. simplex M1, was selected from the roots of maize grown in saline-alkali soil. The P. simplex M1 genome sequence analysis of the bacteria with a length of 5.8 Mbp includes about 700 genes that promote growth and 16 antioxidant activity genes that alleviate saline and alkaline stress. P. simplex M1 can grow below 400 mM NaHCO3 on the LB culture medium; The isolate displayed multiple plant growth-stimulating features, such as nitrogen fixation, produced indole-3-acetic acid (IAA), and siderophore production. This isolate had a positive effect on the resistance to salt of maize in addition to the growth. P. simplex M1 significantly promoted seed germination by enhancing seed vigor in maize whether under normal growth or NaHCO3 stress conditions. The seeds with NaHCO3 treatment exhibited higher reactive oxygen species (ROS) levels than the maize in P. simplex M1 inoculant on maize. P. simplex M1 can colonize the roots of maize. The P. simplex M1 inoculant plant increased chlorophyll in leaves, stimulated root and leaf growth, increased the number of lateral roots and root dry weight, increased the length and width of the blades, and dry weight of the blades. The application of inoculants can significantly reduce the content of malondialdehyde (MDA) and increase the activity of plant antioxidant enzymes (Catalase (CAT), Superoxide Dismutase (SOD), and Peroxidase (POD)), which may thereby improve maize resistance to saline and alkaline stress. Conclusion: P. simplex M1 isolate belongs to plant growth-promoting bacteria by having high nitrogen concentration, indoleacetic acid (IAA), and siderophore, and reducing the content of ROS through the antioxidant system to alleviate salt alkali stress. This study presents the potential application of P. simplex M1 as a biological inoculant to promote plant growth and mitigate the saline and alkaline effects of maize and other crops.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Profiling and Biochemical Identification of Potential Plant Growth-Promoting Endophytic Bacteria from Nypa fruticans
    Fernando, Trinidad C.
    Cruz, Jayvee A.
    PHILIPPINE JOURNAL OF CROP SCIENCE, 2019, 44 (02): : 77 - 85
  • [22] The role of plant growth-promoting bacteria in alleviating drought stress on pepper plants
    Admassie, Mesele
    Woldehawariat, Yitbark
    Alemu, Tesfaye
    Gonzalez, Enrique
    Jimenez, Juan Francisco
    AGRICULTURAL WATER MANAGEMENT, 2022, 272
  • [23] Reducing Drought Stress in Plants by Encapsulating Plant Growth-Promoting Bacteria with Polysaccharides
    Saberi Riseh, Roohallah
    Ebrahimi-Zarandi, Marzieh
    Gholizadeh Vazvani, Mozhgan
    Skorik, Yury A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (23)
  • [24] Chickpea (Cicer arietinum L.) Seeds as a Reservoir of Endophytic Plant Growth-Promoting Bacteria
    Laranjeira, Sara S.
    Alves, Isabel G.
    Marques, Guilhermina
    CURRENT MICROBIOLOGY, 2022, 79 (09)
  • [25] Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants
    Etesami, Hassan
    Glick, Bernard R.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 178
  • [26] A plant's perception of growth-promoting bacteria and their metabolites
    Abou Jaoude, Renee
    Luziatelli, Francesca
    Ficca, Anna Grazia
    Ruzzi, Maurizio
    FRONTIERS IN PLANT SCIENCE, 2024, 14
  • [27] The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation
    Kong, Zhaoyu
    Glick, Bernard R.
    ADVANCES IN MICROBIAL PHYSIOLOGY, VOL 71, 2017, 71 : 97 - 132
  • [28] Use of plant growth-promoting bacteria to facilitate phytoremediation
    Gamalero, Elisa
    Glick, Bernard R.
    AIMS MICROBIOLOGY, 2024, 10 (02): : 415 - 448
  • [29] Alleviation of Salt Stress by Plant Growth-Promoting Bacteria in Hydroponic Leaf Lettuce
    Moncada, Alessandra
    Vetrano, Filippo
    Miceli, Alessandro
    AGRONOMY-BASEL, 2020, 10 (10):
  • [30] Antifungal and Plant Growth-Promoting Bacillus under Saline Stress Modify their Membrane Composition
    Rojas-Solis, Daniel
    Vences-Guzman, Miguel angel
    Sohlenkamp, Christian
    Santoyo, Gustavo
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2020, 20 (03) : 1549 - 1559