DKP-SLAM: A Visual SLAM for Dynamic Indoor Scenes Based on Object Detection and Region Probability

被引:0
作者
Yin, Menglin [1 ]
Qin, Yong [1 ,2 ,3 ,4 ]
Peng, Jiansheng [1 ,2 ,3 ,4 ]
机构
[1] Guangxi Univ Sci & Technol, Coll Automat, Liuzhou 545000, Peoples R China
[2] Hechi Univ, Dept Artificial Intelligence & Mfg, Hechi 546300, Peoples R China
[3] Educ Dept Guangxi Zhuang Autonomous Reg, Key Lab AI & Informat Proc, Hechi 546300, Peoples R China
[4] Hechi Univ, Sch Chem & Bioengn, Guangxi Key Lab Sericulture Ecol & Appl Intelligen, Hechi 546300, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2025年 / 82卷 / 01期
基金
中国国家自然科学基金;
关键词
Visual SLAM; dynamic scene; YOLOX; K-means plus plus clustering; dynamic probability;
D O I
10.32604/cmc.2024.057460
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In dynamic scenarios, visual simultaneous localization and mapping (SLAM) algorithms often incorrectly incorporate dynamic points during camera pose computation, leading to reduced accuracy and robustness. This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability. Firstly, a parallel thread employs the YOLOX object detection model to gather 2D semantic information and compensate for missed detections. Next, an improved K-means++ clustering algorithm clusters bounding box regions, adaptively determining the threshold for extracting dynamic object contours as dynamic points change. This process divides the image into low dynamic, suspicious dynamic, and high dynamic regions. In the tracking thread, the dynamic point removal module assigns dynamic probability weights to the feature points in these regions. Combined with geometric methods, it detects and removes the dynamic points. The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms, providing better pose estimation accuracy and robustness in dynamic environments.
引用
收藏
页码:1329 / 1347
页数:19
相关论文
共 32 条
[1]  
[Anonymous], Starship, n.d. https://starshipdeliveries.com/industry/. [Online] Available at: https://starshipdeliveries.com/industry/ [Accessed 25 May 2022].
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes [J].
Bescos, Berta ;
Facil, Jose M. ;
Civera, Javier ;
Neira, Jose .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :4076-4083
[4]   ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM [J].
Campos, Carlos ;
Elvira, Richard ;
Gomez Rodriguez, Juan J. ;
Montiel, Jose M. M. ;
Tardos, Juan D. .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) :1874-1890
[5]   Improving monocular visual SLAM in dynamic environments: an optical-flow-based approach [J].
Cheng, Jiyu ;
Sun, Yuxiang ;
Meng, Max Q-H .
ADVANCED ROBOTICS, 2019, 33 (12) :576-589
[6]   SG-SLAM: A Real-Time RGB-D Visual SLAM Toward Dynamic Scenes With Semantic and Geometric Information [J].
Cheng, Shuhong ;
Sun, Changhe ;
Zhang, Shijun ;
Zhang, Dianfan .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
[7]   RGB-D SLAM in Dynamic Environments Using Point Correlations [J].
Dai, Weichen ;
Zhang, Yu ;
Li, Ping ;
Fang, Zheng ;
Scherer, Sebastian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) :373-389
[8]   Optical flow-based Moving-Static Separation in Driving Assistance Systems [J].
Duong-Van Nguyen ;
Hughes, Ciaran ;
Horgan, Jonathan .
2015 IEEE 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, :1644-1651
[9]   LSD-SLAM: Large-Scale Direct Monocular SLAM [J].
Engel, Jakob ;
Schoeps, Thomas ;
Cremers, Daniel .
COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 :834-849
[10]   RANDOM SAMPLE CONSENSUS - A PARADIGM FOR MODEL-FITTING WITH APPLICATIONS TO IMAGE-ANALYSIS AND AUTOMATED CARTOGRAPHY [J].
FISCHLER, MA ;
BOLLES, RC .
COMMUNICATIONS OF THE ACM, 1981, 24 (06) :381-395