The aim of this paper is to study the asymptotic behavior for a class of time-dependent convection-diffusion problems in a square = ( 0,1 ) x ( 0, 1), which is a simplified model of the Oseen equations. By considering this problem in a square, we theoretically treat the case where parabolic and ordinary boundary layers are present. We construct correctors which absorb the singularities of the limit solution; this allows to obtain an approximation of the viscous solution up to the boundary. The expression of the correctors is giving explicitly and the uniform validity of the approximate solution is then proved.
机构:
Univ Fed Fluminense, Dept Anal, Rio De Janeiro, Brazil
Univ Paris 06, Inst Jean Le Rond dAlembert, F-75252 Paris 05, FranceUniv Fed Fluminense, Dept Anal, Rio De Janeiro, Brazil
Ruas, Vitoriano
Brasil, Antonio, Jr.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Brasilia, Dept Engn Mecan, Brasilia, DF, BrazilUniv Fed Fluminense, Dept Anal, Rio De Janeiro, Brazil
Brasil, Antonio, Jr.
Trales, Paulo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Fluminense, Dept Anal, Rio De Janeiro, BrazilUniv Fed Fluminense, Dept Anal, Rio De Janeiro, Brazil
机构:
Purdue Univ, Sch Aeronaut & Astronaut, 701 W Stadium Ave, W Lafayette, IN 47907 USAPurdue Univ, Sch Aeronaut & Astronaut, 701 W Stadium Ave, W Lafayette, IN 47907 USA
Srinivasan, Sashank
Poggie, Jonathan
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Sch Aeronaut & Astronaut, 701 W Stadium Ave, W Lafayette, IN 47907 USAPurdue Univ, Sch Aeronaut & Astronaut, 701 W Stadium Ave, W Lafayette, IN 47907 USA
Poggie, Jonathan
Zhang, Xiangxiong
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USAPurdue Univ, Sch Aeronaut & Astronaut, 701 W Stadium Ave, W Lafayette, IN 47907 USA