Janus nanofibrous composite membrane with unidirectional water transportation for high-efficiency solar-driven interfacial evaporation

被引:0
作者
Li, Peihang [1 ]
Dong, Wenhao [1 ,2 ]
Hu, Huijing [1 ]
Dong, Jinhua [1 ]
Zhao, Ziqiang [1 ]
Zhou, Yuqi [1 ]
Lang, Chenhong [3 ]
Liu, Qingsheng [1 ]
Li, Haoxuan [1 ]
Li, Dawei [1 ,4 ]
机构
[1] Jiangnan Univ, Coll Text Sci & Engn, Nonwoven Technol Lab, Wuxi 214122, Peoples R China
[2] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
[3] Zhejiang Sci Tech Univ, Int Inst Silk, Coll Text Sci & Engn, Hangzhou 310018, Peoples R China
[4] Soochow Univ, China Natl Text & Apparel Council, Key Lab Silk Funct Mat & Technol, Suzhou 215123, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2025年 / 13卷 / 02期
基金
中国国家自然科学基金;
关键词
ZnO nanowires; Unidirectional water transportation; Solar-driven interfacial evaporation; Antimicrobial; RECENT PROGRESS; AIR-GAP; DESALINATION; CHALLENGES; LIQUID; FILM;
D O I
10.1016/j.jece.2025.115469
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Janus nanofiber membrane boasts a distinctive porous structure coupled with symmetrical selective wettability, which can significantly enhance its pollution resistance and present vast potential in the realm of interfacial water evaporation. In this study, a unidirectional water-transporting Janus composite membrane was prepared via solution-blowing and electrospinning. The hydrophilic layer was made of PVDF nanofibers decorated with ZnO nanowires (ZnONWs), while the hydrophobic layer was constructed with PVDF nanofibers embedded in Ag nanoparticles (AgNPs). When the spinning time of the hydrophobic layer is 10-15 min, the Janus membrane achieves unidirectional water transportation. The water evaporation rate of the composite membrane in 3.5 % NaCl and 3.5 % CuSO4 solutions can be as high as 7.74 kg & sdot;m- 2 & sdot;h- 1 and 10.87 kg & sdot;m- 2 & sdot;h- 1, respectively. In addition, ZnONWs and AgNPs can effectively enhance light absorption and show significant resistance to both S. aureus and E. col. In summary, the composite film has high photothermal utilization efficiency and anti-fouling performance and is expected to be applied to interfacial water evaporation systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Integrating a Self-Floating Janus TPC@CB Sponge for Efficient Solar-Driven Interfacial Water Evaporation
    Li, Shuying
    Qiu, Feng
    Xia, Yuguo
    Chen, Dairong
    Jiao, Xiuling
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (17) : 19409 - 19418
  • [22] Spongy polyelectrolyte hydrogel with Janus porous for solar-driven interfacial evaporation and sustainable seawater desalination
    Luo, Jiarong
    Tian, Zhuoyue
    Chen, Juanli
    Wen, Xiufang
    Cai, Kui
    Yang, Zhensheng
    Fang, Jing
    Li, Hao
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 700
  • [23] COPPER OXIDE NANORODS BASED NANOFIBERS MEMBRANE FOR SOLAR-DRIVEN INTERFACIAL EVAPORATION
    Zhao, Jiang -Hui
    Gao, Bing
    Hong, Jun-Xian
    Low, Siew Chun
    Xu, Zhen-Zhen
    Tan, Soon Huat
    THERMAL SCIENCE, 2023, 27 (3A): : 1985 - 1991
  • [24] Large-scale production of spent coffee ground-based photothermal materials for high-efficiency solar-driven interfacial evaporation
    Shi, Congcan
    Zhang, Xue
    Nilghaz, Azadeh
    Wu, Zhenhua
    Wang, Tao
    Zhu, Bocheng
    Tang, Guiming
    Su, Bin
    Tian, Junfei
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [25] Enhanced Ventilation Processes on Vacuum Thermal Reduction TiO2 Porous Ceramics for High-Efficiency Solar-Driven Interfacial Evaporation
    Chen, Lei
    Yao, Dongxu
    Liang, Hanqin
    Xia, Yongfeng
    Zeng, Yu-Ping
    ENERGY TECHNOLOGY, 2023, 11 (09)
  • [26] Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization
    Ding, Tianpeng
    Zhou, Yi
    Ong, Wei Li
    Ho, Ghim Wei
    MATERIALS TODAY, 2021, 42 : 178 - 191
  • [27] Highly stable TiO2 ceramics for high efficiency and practical solar-driven interfacial evaporation
    Chen, Lei
    Yao, Dongxu
    Liang, Hanqin
    Xia, Yongfeng
    Zeng, Yu-Ping
    SOLAR ENERGY, 2023, 262
  • [28] Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications
    Zhu, Liangliang
    Gao, Minmin
    Peh, Connor Kang Nuo
    Ho, Ghim Wei
    NANO ENERGY, 2019, 57 : 507 - 518
  • [29] Solar-driven interfacial water evaporation for wastewater purification: Recent advances and challenges
    Cui, Lingfang
    Wang, Peifang
    Che, Huinan
    Chen, Juan
    Liu, Bin
    Ao, Yanhui
    CHEMICAL ENGINEERING JOURNAL, 2023, 477
  • [30] Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination
    Zang, Linlin
    Sun, Liguo
    Zhang, Shaochun
    Finnerty, Casey
    Kim, Albert
    Ma, Jun
    Mi, Baoxia
    CHEMICAL ENGINEERING JOURNAL, 2021, 422