Fast-charging lithium-ion batteries: Synergy of carbon nanotubes and laser ablation

被引:0
|
作者
Vennam, Geetika [1 ]
Singh, Avtar [2 ]
Dunlop, Alison R. [3 ]
Islam, Saiful [1 ]
Weddle, Peter J. [2 ]
Mak, Bianca Yi Wen [1 ]
Tancin, Ryan [2 ]
Evans, Michael C. [1 ]
Trask, Stephen E. [3 ]
Dufek, Eric J. [1 ]
Colclasure, Andrew M. [2 ]
Finegan, Donal P. [2 ]
Smith, Kandler [2 ]
Jansen, Andrew N. [3 ]
Gering, Kevin L. [1 ]
Yang, Zhenzhen [3 ]
Tanim, Tanvir R. [1 ]
机构
[1] Idaho Natl Lab, Energy Storage Res & Anal Dept, Idaho Falls, ID 83415 USA
[2] Natl Renewable Energy Lab, Energy Convers & Storage Syst Ctr, Golden, CO 80401 USA
[3] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
关键词
Lithium plating; Fast-charging; Lithium-ion batteries; Laser ablation; Single-wall carbon nano tubes; ESTER COSOLVENTS; CELLS; ELECTRODES;
D O I
10.1016/j.jpowsour.2025.236566
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Advancing lithium-ion battery (LiB) technology to achieve 10-15-min extreme fast charging (XFC) while maintaining high energy density and longevity poses a significant challenge. Addressing Li-plating is crucial, as it depletes useable Li, causing deterioration and safety issues. This study explores a holistic approach incorporating Single-Wall Carbon Nanotubes (SWCNTs) and Laser Ablation (LA) to mitigate Li-plating while maintaining high charge acceptance under 10-15-min XFC. SWCNTs enhance the electrical conductivity and mechanical integrity of the positive electrode (PE), reducing overall cell overpotential at high charging rates. Concurrently, LA is applied to negative electrodes (NE) to reduce tortuosity of ion-diffusion pathways and increase surface wettability, improving Li-ion transport. Combining SWCNTs in the PE and LA on the NE, our experimental findings demonstrate a significant reduction in Li-plating and maintained high charge acceptance of similar to 84.33 % after 800 5C (12 min) charge cycles for cells having PE with similar to 3.3 mAh cm(-2) and NE with 3.9 mAh cm(-2) loadings. This study highlights the potential of combining SWCNTs and LA to address Li-plating in LiBs and opens new avenues for designing battery systems capable of achieving 10-15-min XFC.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Hierarchical macro/mesoporous NiO as stable and fast-charging anode materials for lithium-ion batteries
    Zhu, Xiaobo
    Luo, Bin
    Butburee, Teera
    Zhu, Jingwen
    Han, She
    Wang, Lianzhou
    MICROPOROUS AND MESOPOROUS MATERIALS, 2017, 238 : 78 - 83
  • [42] Suppressing Deformation of Silicon Anodes via Interfacial Synthesis for Fast-Charging Lithium-Ion Batteries
    Lee, Taeyong
    Kim, Namhyung
    Lee, Jiyun
    Lee, Yoonkwang
    Sung, Jaekyung
    Kim, Hyeongjun
    Chae, Sujong
    Cha, Hyungyeon
    Son, Yeonguk
    Kwak, Sang Kyu
    Cho, Jaephil
    ADVANCED ENERGY MATERIALS, 2023, 13 (41)
  • [43] Sophisticated strategies for designing fast-charging lithium-ion batteries without sacrificing the energy density
    Choi, Hyeongjun
    Koo, Jin Kyo
    Hwang, Soo Min
    Kim, Young-Jun
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [44] Highly safe lithium vanadium oxide anode for fast-charging dendrite-free lithium-ion batteries
    Zhang, Hao
    Lin, Wenhui
    Kang, Le
    Zhang, Yi
    Zhou, Yunlei
    Jiang, Shan
    NANOTECHNOLOGY REVIEWS, 2024, 13 (01)
  • [45] Lithium Intercalation Kinetics and Fast-Charging Lithium-Ion Batteries: Rational Design of Graphite Particles Via Spheroidization
    Martin, Jan
    Axmann, Peter
    Wohlfahrt-Mehrens, Margret
    Mancini, Marilena
    ENERGY TECHNOLOGY, 2023, 11 (11)
  • [46] Effect of Fast Charging on Lithium-Ion Batteries: A Review
    Abd El Halim, Ahmed Abd El Baset
    Bayoumi, Ehab Hassan Eid
    El-Khattam, Walid
    Ibrahim, Amr Mohamed
    SAE INTERNATIONAL JOURNAL OF ELECTRIFIED VEHICLES, 2023, 12 (03): : 361 - 388
  • [47] A medium/low concentration localized electrolyte for safe and fast-charging lithium-ion batteries
    Zhou, Chengtian
    Guo, Yiming
    Chen, Bowen
    Sarkar, Subhajit
    Thangadurai, Venkataraman
    ELECTROCHIMICA ACTA, 2023, 461
  • [48] Fast charging of lithium-ion batteries at all temperatures
    Yang, Xiao-Guang
    Zhang, Guangsheng
    Ge, Shanhai
    Wang, Chao-Yang
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (28) : 7266 - 7271
  • [49] Electrolyte inhomogeneity induced lithium plating in fast charging lithium-ion batteries
    Yang, Yi
    Xu, Lei
    Yang, Shi-Jie
    Yan, Chong
    Huang, Jia-Qi
    JOURNAL OF ENERGY CHEMISTRY, 2022, 73 : 394 - 399
  • [50] Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries
    Kim, Jisu
    Jeghan, Shrine Maria Nithya
    Lee, Gibaek
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 305 (305)