Characterization of trees with second minimum eccentricity energy

被引:0
|
作者
Mahato, Iswar [1 ]
机构
[1] Indian Inst Technol, Dept Math, Mumbai 400076, India
关键词
Eccentricity matrix; Tree; Eccentricity energy; Equitable partition; Quotient matrix; MATRIX; GRAPHS;
D O I
10.1016/j.dam.2025.02.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity matrix of a connected graph G, denoted by epsilon(G), is obtained from the distance matrix of G by keeping the largest entries in each row and each column, and putting the remaining entries as zero. The eigenvalues of epsilon(G) are the epsilon-eigenvalues of G. The eccentricity energy (or the epsilon-energy) of G is the sum of the absolute values of all epsilon-eigenvalues of G. In this article, we characterize the trees with second minimum E-energy among all trees on n >= 5 vertices. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:78 / 87
页数:10
相关论文
共 50 条
  • [21] On the extremal total reciprocal edge-eccentricity of trees
    Li, Shuchao
    Zhao, Lifang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) : 587 - 602
  • [22] Trees with unique minimum p-dominating sets
    Lu, You
    Hou, Xinmin
    Xu, Jun-Ming
    Li, Ning
    UTILITAS MATHEMATICA, 2011, 86 : 193 - 205
  • [23] MINIMUM RANK OF POWERS OF TREES
    Dealba, Luz M.
    Grout, Jason
    Kim, In-Jae
    Kirkland, Steve
    Mcdonald, Judith J.
    Yielding, Amy
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 151 - 163
  • [24] ON THE EXTREMAL CONNECTIVE ECCENTRICITY INDEX AMONG TREES WITH MAXIMUM DEGREE
    Hayat, Fazal
    TRANSACTIONS ON COMBINATORICS, 2021, 10 (04) : 239 - 246
  • [25] Maximum Energy Trees with One Maximum and One Second Maximum Degree Vertex
    Yao, Xiangmei
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 64 (01) : 217 - 230
  • [26] First and Second Zagreb Eccentricity Indices of Thorny Graphs
    Idrees, Nazeran
    Saif, Muhammad Jawwad
    Rauf, Asia
    Mustafa, Saba
    SYMMETRY-BASEL, 2017, 9 (01):
  • [27] On the Number of Minimum Dominating Sets in Trees
    D. S. Taletskii
    Mathematical Notes, 2023, 113 : 552 - 566
  • [28] Minimum status of trees with given parameters
    Peng, Zhene
    Zhou, Bo
    RAIRO-OPERATIONS RESEARCH, 2021, 55 : S765 - S785
  • [29] The minimum ABC index of chemical trees
    Gao, Wei
    DISCRETE APPLIED MATHEMATICS, 2024, 348 : 132 - 143
  • [30] Trees with minimum general Randic index
    Hu, YM
    Li, XL
    Yuan, Y
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2004, (52) : 119 - 128