Phylotranscriptomic Analyses Resolve Evolutionary History of Eremopyrum (Triticeae; Poaceae)

被引:0
作者
Fan, Shu-Qi [1 ,2 ]
Yan, Hao [3 ]
Zhang, Yue [3 ]
Ma, Xiao [2 ]
Zhao, Jun-Ming [2 ]
Zhang, Hai-Qin [2 ]
Zhou, Yong-Hong [3 ]
Fan, Xing [3 ]
Wen, Yong-Xian [1 ]
Sha, Li-Na [2 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Comp & Informat Sci, Fuzhou, Fujian, Peoples R China
[2] Sichuan Agr Univ, Coll Grassland Sci & Technol, Chengdu, Sichuan, Peoples R China
[3] Sichuan Agr Univ, Triticeae Res Inst, Chengdu, Sichuan, Peoples R China
来源
ECOLOGY AND EVOLUTION | 2025年 / 15卷 / 02期
基金
中国国家自然科学基金;
关键词
<italic>Eremopyrum</italic>; hybridization; introgression; polyploid; speciation; COPY NUCLEAR ACC1; PHYLOGENETIC ANALYSIS; GENOME ORIGIN; INTROGRESSION; POLYPLOIDY; TOOL;
D O I
10.1002/ece3.70840
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Disentangling the phylogenetic relationship of polyploid species is essential for understanding how such polyploid species evolved following their origin. To investigate the speciation and evolutionary history of Eremopyrum, we analyzed 36 transcriptomes from 9 polyploid accessions of Eremopyrum and 27 diploid taxa representing 12 basic genomes in Triticeae. Phylogenetic reconstruction, divergence time, and introgression event demonstrated that (1) Eremopyrum and Agropyron shared a common ancestor; (2) Eremopyrum has undergone ongoing evolutionary diversification since its origin in Late Miocene; (3) the diploid E. triticeum and E. distans were the genome donors of the tetraploid species of Eremopyrum; (4) both Eremopyrum and Agropyron contribute to the nonmonophyletic origin of tetraploid E. orientale via introgression events. Our results shed new light on our understanding of the diversity and ecological adaptation of the species in Eremopyrum.
引用
收藏
页数:8
相关论文
共 49 条
  • [1] Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., Basic Local Alignment Search Tool, Journal of Molecular Biology, 215, 3, pp. 403-410, (1990)
  • [2] Bentham G., Hooker J., “Gramineae,”, (1883)
  • [3] Capella-Gutierrez S., Silla-Martinez J.M., Gabaldon T., trimAl: A Tool for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses, Bioinformatics, 25, 15, pp. 1972-1973, (2009)
  • [4] Chen N., Chen W.J., Yan H., Et al., Evolutionary Patterns of Plastome Uncover Diploid-Polyploid Maternal Relationships in Triticeae, Molecular Phylogenetics and Evolution, 149, 106, (2020)
  • [5] Cohen K.M., Finney S.C., Gibbard P.L., Fan J.-X., The ICS International Chronostratigraphic Chart, Episodes Journal of International Geoscience, 36, 3, pp. 199-204, (2013)
  • [6] Davidson N.M., Oshlack A., Corset: Enabling Differential Gene Expression Analysis for de Novo Assembled Transcriptomes, Genome Biology, 15, pp. 1-14, (2014)
  • [7] Emms D.M., Kelly S., OrthoFinder: Solving Fundamental Biases in Whole Genome Comparisons Dramatically Improves Orthogroup Inference Accuracy, Genome Biology, 16, pp. 1-14, (2015)
  • [8] Escobar J.S., Scornavacca C., Cenci A., Et al., Multigenic Phylogeny and Analysis of Tree Incongruences in Triticeae (Poaceae), BMC Evolutionary Biology, 11, (2011)
  • [9] Fan X., Sha L.N., Dong Z.Z., Et al., Phylogenetic Relationships and Y Genome Origin in Elymus L. Sensu Lato (Triticeae
  • [10] Poaceae) Based on Single-Copy Nuclear Acc1 and Pgk1 Gene Sequences, Molecular Phylogenetics and Evolution, 69, 3, pp. 919-928, (2013)