Spin-Photon Entanglement of a Single Er3+Ion in the Telecom Band

被引:0
|
作者
Uysal, Mehmet T. [1 ]
Dusanowski, Lukasz [1 ]
Xu, Haitong [1 ]
Horvath, Sebastian P. [1 ]
Ourari, Salim [1 ]
Cava, Robert J. [2 ]
de Leon, Nathalie P. [1 ]
Thompson, Jeff D. [1 ]
机构
[1] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
来源
PHYSICAL REVIEW X | 2025年 / 15卷 / 01期
关键词
SOLID-STATE SPINS; QUANTUM-DOT SPIN; HERALDED ENTANGLEMENT; RESONANCE; ATOM;
D O I
10.1103/PhysRevX.15.011071
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement between photons and a quantum memory is a key component of quantum repeaters, which allow long-distance quantum entanglement distribution in the presence of fiber losses. Spin-photon entanglement has been implemented with a number of different atomic and solid-state qubits with long spin coherence times, but none directly emit photons into the 1.5-mu m telecom band where losses in optical fibers are minimized. Here, we demonstrate spin-photon entanglement using a single rare earth ion in the solidstate Er3coupled to a silicon nanophotonic cavity, which directly emits photons at 1532.6 nm. We infer an entanglement fidelity of 73(3)% after propagating through 15.6 km of optical fiber. This work opens the door to large-scale quantum networks based Er3ions, leveraging scalable silicon device fabrication and spectral multiplexing.
引用
收藏
页数:18
相关论文
共 17 条
  • [1] Spin-photon entanglement with direct photon emission in the telecom C-band
    Laccotripes, P.
    Mueller, T.
    Stevenson, R. M.
    Skiba-Szymanska, J.
    Ritchie, D. A.
    Shields, A. J.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [2] Spin-photon entanglement from a solid-state system at telecom wavelengths
    Laccotripes, P.
    Mueller, T.
    Stevenson, R. M.
    Skiba-Szymanska, J.
    Ritchie, D. A.
    Shields, A. J.
    QUANTUM COMPUTING, COMMUNICATION, AND SIMULATION IV, 2024, 12911
  • [3] Deterministic spin-photon entanglement from a trapped ion in a fiber Fabry-Perot cavity
    Kobel, Pascal
    Breyer, Moritz
    Koehl, Michael
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [4] Birefringent Spin-Photon Interface Generates Polarization Entanglement
    Leppenen, Nikita
    Smirnov, Dmitry S.
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (12)
  • [5] Coherent control with optical pulses for deterministic spin-photon entanglement
    Truex, Katherine
    Webster, L. A.
    Duan, L. -M.
    Sham, L. J.
    Steel, D. G.
    PHYSICAL REVIEW B, 2013, 88 (19)
  • [6] On-chip spin-photon entanglement based on photon-scattering of a quantum dot
    Chan, Ming Lai
    Tiranov, Alexey
    Appel, Martin Hayhurst
    Wang, Ying
    Midolo, Leonardo
    Scholz, Sven
    Wieck, Andreas D.
    Ludwig, Arne
    Sorensen, Anders Sondberg
    Lodahl, Peter
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [7] Indistinguishable telecom band photons from a single Er ion in the solid state
    Ourari, Salim
    Dusanowski, Lukasz
    Horvath, Sebastian P.
    Uysal, Mehmet T.
    Phenicie, Christopher M.
    Stevenson, Paul
    Raha, Mouktik
    Chen, Songtao
    Cava, Robert J.
    de Leon, Nathalie P.
    Thompson, Jeff D.
    NATURE, 2023, 620 (7976) : 977 - +
  • [8] Stark Tuning of Telecom Single-Photon Emitters Based on a Single Er3+
    Huang, Jian-Yin
    Liang, Peng-Jun
    Zheng, Liang
    Li, Pei-Yun
    Ma, You-Zhi
    Liu, Duan-Chen
    Xie, Jing-Hui
    Zhou, Zong-Quan
    Li, Chuan-Feng
    Guo, Guang-Can
    CHINESE PHYSICS LETTERS, 2023, 40 (07)
  • [9] Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin-photon interface
    Castelletto, Stefania
    Inam, Faraz A.
    Sato, Shin-ichiro
    Boretti, Alberto
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2020, 11 : 740 - 769
  • [10] Observation of entanglement between a quantum dot spin and a single photon
    Gao, W. B.
    Fallahi, P.
    Togan, E.
    Miguel-Sanchez, J.
    Imamoglu, A.
    NATURE, 2012, 491 (7424) : 426 - 430