Small ruminant farming plays a pivotal role in agriculture, especially in developing countries due to sheep's diverse functions and capacity to acclimate to varying temperatures. This review comprehensively explored the impact of rising temperatures on reproductive processes, reproductive function encoding gene expression, and sheep's ability to adapt to heat stress. Several mechanisms contribute to sheep's resilience to heat stress, encompassing morphological, behavioral, physiological, and genetic adaptations. It has been shown that heat stress compromises fertility by affecting follicular development, ovulation rate, estrous behavior, rates of conception, embryonic survival, and fetal development, while also disrupting sperm production and motility, and increasing the incidence of structurally abnormal sperm in males. Estimates suggested that heat stress may reduce conception rates from 20% to 27%. Essential genes encoding the Gonadotrophin-releasing hormone, Follicle-stimulating hormone receptor, Luteinizing hormone receptor, Estradiol receptor, progesterone receptor, and Inhibin play a critical role in elucidating how heat stress impacts the reproductive performance of sheep. Furthermore, the resilience of sheep in facing heat stress adversities is associated with a specific heat shock factor. When an animal is under heat stress, Heat shock factors get activated and stimulate the production of Heat Shock Proteins (HSPs). Emphasis should be given to identifying specific genes and candidate genes that confer protection against heat stress and conducting comprehensive research to unravel how sheep adapt to demanding local climatic conditions to enhance production and profitability, improve animal welfare, and for genetic conservation and breeding programs.