Achieve an excellent strength-ductility balance by introducing heterogeneous structure in wire arc additively manufactured Ti-Cu alloys

被引:0
作者
Zheng, Zhendan [1 ]
Chen, Jiaming [1 ]
Yu, Peng [1 ]
Tian, Pengfei [1 ]
Wang, Haijie [1 ]
Wu, Shaojie [1 ,2 ]
Cheng, Fangjie [1 ,2 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Tianjin Key Lab Adv Joining Technol, Tianjin 300350, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2025年 / 927卷
关键词
Heterogeneous structure; Heterogeneous deformation behavior; Hardness difference; Geometrically necessary dislocations; Strength-ductility balance; MECHANICAL-PROPERTIES; PLASTIC-DEFORMATION; GRAIN-REFINEMENT; TITANIUM-ALLOY; MICROSTRUCTURE; EVOLUTION;
D O I
10.1016/j.msea.2025.147973
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The low hardness difference between martensite alpha (alpha') and eutectoid structure (ES) in additively manufactured Ti-Cu alloys led to the insignificant heterogeneous deformation behavior and the resultant severe strengthductility trade-off. In the current work, the Ti-xCu (x = 1, 4, 7, 10 wt%) was fabricated by the gas metal arcbased wire arc additive manufacturing (GMA-WAAM), and the microstructure evolution, deformation behaviors, and tensile properties were investigated. The results showed that, in the Ti-4Cu, a unique heterogeneous structure was introduced, as manifested by a balanced phase ratio of 1:1 and a large hardness difference of 3.4 GPa between alpha' and ES. A significant heterogeneous deformation behavior was triggered, as manifested by a large multiplication of geometrically necessary dislocations (Delta rho GNDs) of 3.45 x 1015 m- 2 and a tortuous main crack propagation path. An excellent strength-ductility balance was achieved, as manifested by a yield strength (YS) of 971 MPa and an elongation to fracture (EF) of 11.6 %. The large hardness difference was attributed to the in-situ Cu-solute diffusion from alpha' into ES resulting from the intrinsic heat treatment (IHT) effect. The strengthening mechanism was attributed to the 330 MPa resulting from the hetero-deformation-induced (HDI) strengthening. The toughening mechanism was attributed to the strain hardening resulting from the multiplication of GNDs and the mitigation of strain concentration. The current work provided a new insight into the design of heterogeneous structure.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Contribution made by double-sized TiC particles addition to the ductility-strength synergy in wire and arc additively manufactured Al-Cu alloys
    Jin, Peng
    Zhou, Junjie
    Zhou, Junxiong
    Liu, Yibo
    Sun, Qingjie
    COMPOSITES PART B-ENGINEERING, 2024, 268
  • [12] Exceptional strength-ductility synergy of additively manufactured CoCrNi medium-entropy alloy achieved by lattice defects in heterogeneous microstructures
    Wang, Jianying
    Zou, Jianpeng
    Yang, Hailin
    Zhang, Lijun
    Liu, Zhilin
    Dong, Xixi
    Ji, Shouxun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 127 : 61 - 70
  • [13] An additively manufactured precipitation hardening medium entropy alloy with excellent strength-ductility synergy over a wide temperature range
    Huang, Jing
    Li, Wanpeng
    Yang, Tao
    Chou, Tzu-Hsiu
    Zhou, Rui
    Liu, Bin
    Huang, Jacob C.
    Liu, Yong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 197 : 247 - 264
  • [14] Superior strength-ductility synergy of a wire-plasma-arc additive manufactured magnesium alloy
    Wang, B. S.
    Liu, X.
    Zheng, Y. X.
    Cheng, J. C.
    Zhou, F. H.
    Huang, J. Y.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 927
  • [15] The effects of ultrasonic frequency pulsed arc on wire plus arc additively manufactured high strength aluminum alloys
    Cong, Baoqiang
    Cai, Xinyi
    Qi, Zewu
    Qi, Bojin
    Zhang, Yating
    Zhang, Ruize
    Guo, Wei
    Zhou, Zhenggan
    Yin, Yuhuan
    Bu, Xianzheng
    ADDITIVE MANUFACTURING, 2022, 51
  • [16] Novel cast Mg-Ga-Li alloys with excellent strength-ductility balance and corrosion resistance
    Li, Zi-Lin
    Shi, Zhang-Zhi
    Cai, Wen-Long
    Wang, Jing-Yang
    Ji, Xiao-Jing
    Dai, Fu-Zhi
    Gu, Xin-Fu
    Wang, Lu-Ning
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1026
  • [17] Achieving excellent strength-ductility combination through the control of intricate substructures in an additively manufactured Co-Cr-Mo alloy
    Jiang, Wenting
    An, Xinglong
    Ni, Song
    Wang, Li
    He, Junyang
    Chen, Zibin
    Huang, Yi
    Song, Min
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 886
  • [18] Achieving high strength-ductility synergy via layer-wise heterogeneous structure of additively manufactured reduced activation ferrite/martensite steel
    Chen, Zhenyu
    Zhuo, Yuhao
    Cheng, Yuang
    Song, Yu
    Xia, Zhixin
    Lu, Chengqi
    Zhu, Xing
    Wang, Chuanyang
    Jia, Qingbo
    MATERIALS RESEARCH LETTERS, 2025,
  • [19] Achieving enhanced tensile strength-ductility synergy through phase modulation in additively manufactured titanium alloys
    Jin, Kai-Hang
    Liu, Cheng
    Ye, Jiatao
    Yang, Wanwan
    Fang, Yingchun
    Wei, Xiao
    Jin, Jiaying
    Ding, Qingqing
    Bei, Hongbin
    Zhao, Xinbao
    Zhang, Ze
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 909
  • [20] Enhancing strength-ductility synergy of Cu alloys with heterogeneous microstructure via rotary swaging and annealing
    Li, Xingfu
    Li, Cong
    Sun, Lele
    Gong, Yulan
    Pan, Hongjiang
    Tan, Zhilong
    Xu, Lei
    Zhu, Xinkun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 920