Analytic Approach Solution to Time-Fractional Phi-4 Equation with Two-Parameter Fractional Derivative

被引:0
|
作者
Massoun, Youssouf [1 ]
Alomari, Abedel-Karrem [2 ]
Cesarano, Clemente [3 ]
机构
[1] Univ Algiers, Fac Sci, Dept Math, 2 St Didouche Mourad, Algiers 16000, Algeria
[2] Yarmouk Univ, Fac Sci, Dept Math, Irbid 21163, Jordan
[3] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
关键词
Phi-4; equation; generalized Caputo fractional derivative; homotopy analysis method;
D O I
10.3390/fractalfract8100576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to building a general framework for constructing a solution to fractional Phi-4 differential equations using a Caputo definition with two parameters. We briefly introduce some definitions and properties of fractional calculus in two parameters and the Phi-4 equation. By investigating the homotopy analysis method, we built the solution algorithm. The two parameters of the fractional derivative gain vary the behavior of the solution, which allows the researchers to fit their data with the proper parameter. To evaluate the effectiveness and accuracy of the proposed algorithm, we compare the results with those obtained using various numerical methods in a comprehensive comparative study.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Boundary Integral Solution of the Time-Fractional Diffusion Equation
    Kemppainen, J.
    Ruotsalainen, K.
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING VOL 2: COMPUTATIONAL METHODS, 2010, : 213 - 222
  • [42] Boundary Integral Solution of the Time-Fractional Diffusion Equation
    Kemppainen, J.
    Ruotsalainen, K.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 64 (02) : 239 - 249
  • [43] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [44] Stochastic solution to a time-fractional attenuated wave equation
    Mark M. Meerschaert
    Peter Straka
    Yuzhen Zhou
    Robert J. McGough
    Nonlinear Dynamics, 2012, 70 : 1273 - 1281
  • [45] Numerical solution of time-fractional Black–Scholes equation
    Miglena N. Koleva
    Lubin G. Vulkov
    Computational and Applied Mathematics, 2017, 36 : 1699 - 1715
  • [46] Stochastic solution to a time-fractional attenuated wave equation
    Meerschaert, Mark M.
    Straka, Peter
    Zhou, Yuzhen
    McGough, Robert J.
    NONLINEAR DYNAMICS, 2012, 70 (02) : 1273 - 1281
  • [47] Analytic technique for solving temporal time-fractional gas dynamics equations with Caputo fractional derivative
    Alaroud, Mohammad
    Ababneh, Osama
    Tahat, Nedal
    Al-Omari, Shrideh
    AIMS MATHEMATICS, 2022, 7 (10): : 17647 - 17669
  • [48] Nonlocal Telegraph Equation in Frame of the Conformable Time-Fractional Derivative
    Bouaouid, Mohamed
    Hilal, Khalid
    Melliani, Said
    ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [49] EXISTENCE AND UNIQUENESS OF THE SOLUTION FOR A TIME-FRACTIONAL DIFFUSION EQUATION
    Kemppainen, J.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (03) : 411 - 417
  • [50] Analytical Solution of Time-Fractional Advection Dispersion Equation
    Salim, Tariq O.
    El-Kahlout, Ahmad
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2009, 4 (01): : 176 - 188