Hyperspectral Image Mixed Denoising via Robust Representation Coefficient Image Guidance and Nonlocal Low-Rank Approximation

被引:0
|
作者
Song, Jiawei [1 ]
Guo, Baolong [1 ]
Yuan, Zhe [1 ]
Wang, Chao [1 ]
He, Fangliang [1 ]
Li, Cheng [2 ]
机构
[1] Xidian Univ, Inst Intelligent Control & Image Engn, Xian 710071, Peoples R China
[2] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral image (HSI) denoising; nonlocal self-similarity; sparse principal component analysis (SPCA); low-rank approximation; subspace representation; SPARSE; RESTORATION; REGULARIZATION;
D O I
10.3390/rs17061021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recently, hyperspectral image (HSI) mixed denoising methods based on nonlocal subspace representation (NSR) have achieved significant success. However, most of these methods focus on optimizing the denoiser for representation coefficient images (RCIs) without considering how to construct RCIs that better inherit the spatial structure of the clean HSI, thereby affecting subsequent denoising performance. Although existing works have constructed RCIs from the perspective of sparse principal component analysis (SPCA), the refinement of RCIs in mixed noise conditions still leaves much to be desired. To address the aforementioned challenges, in this paper, we reconstructed robust RCIs based on SPCA in mixed noise circumstances to better preserve the spatial structure of the clean HSI. Furthermore, we propose to utilize the robust RCIs as prior information and perform iterative denoising in the denoiser that incorporates low-rank approximation. Extensive experiments conducted on both simulated and real HSI datasets demonstrate that the proposed robust RCIs guidance and low-rank approximation method, denoted as RRGNLA, exhibits competitive performance in terms of mixed denoising accuracy and computational efficiency. For instance, on the Washington DC Mall (WDC) dataset in Case 3, the denoising quantitative metrics of the mean peak signal-to-noise ratio (MPSNR), mean structural similarity index (MSSIM), and spectral angle mean (SAM) are 36.06 dB, 0.963, and 3.449, respectively, with a running time of 35.24 s. On the Pavia University (PaU) dataset in Case 4, the denoising quantitative metrics of MPSNR, MSSIM, and SAM are 34.34 dB, 0.924, and 5.505, respectively, with a running time of 32.79 s.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Kronecker component with robust low-rank dictionary for image denoising
    Zhang, Lei
    Liu, Cong
    DISPLAYS, 2022, 74
  • [32] A Low-Rank Tensor Dictionary Learning Method for Hyperspectral Image Denoising
    Gong, Xiao
    Chen, Wei
    Chen, Jie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 1168 - 1180
  • [33] Joint Spatial and Spectral Low-Rank Regularization for Hyperspectral Image Denoising
    Xue, Jize
    Zhao, Yongqiang
    Liao, Wenzhi
    Kong, Seong G.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (04): : 1940 - 1958
  • [34] Removal of Mixed Noise in Hyperspectral Images Based on Subspace Representation and Nonlocal Low-Rank Tensor Decomposition
    He, Chun
    Wei, Youhua
    Guo, Ke
    Han, Hongwei
    SENSORS, 2024, 24 (02)
  • [35] Hyperspectral Image Denoising via L0 Regularized Low-Rank Tucker Decomposition
    Tian, Xin
    Xie, Kun
    Zhang, Hanling
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 3297 - 3313
  • [36] DEEP SPARSE AND LOW-RANK PRIOR FOR HYPERSPECTRAL IMAGE DENOISING
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sigurdsson, Jakob
    Sveinsson, Johannes R.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1217 - 1220
  • [37] HYPERSPECTRAL IMAGE DENOISING WITH MULTISCALE LOW-RANK MATRIX RECOVERY
    Huang, Zhihong
    Li, Shutao
    Hu, Fang
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5442 - 5445
  • [38] Kernel Wiener filtering model with low-rank approximation for image denoising
    Zhang, Yongqin
    Xiao, Jinsheng
    Peng, Jinye
    Ding, Yu
    Liu, Jiaying
    Guo, Zongming
    Zong, Xiaopeng
    INFORMATION SCIENCES, 2018, 462 : 402 - 416
  • [39] Robust low-rank representation via residual projection for image classification
    Hui, Kai-fa
    Shen, Xiang-jun
    Abhadiomhen, Stanley Ebhohimhen
    Zhan, Yong-zhao
    KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [40] Sparse Unmixing for Hyperspectral Image with Nonlocal Low-Rank Prior
    Zheng, Yuhui
    Wu, Feiyang
    Shim, Hiuk Jae
    Sun, Le
    REMOTE SENSING, 2019, 11 (24)