Hyperspectral Image Mixed Denoising via Robust Representation Coefficient Image Guidance and Nonlocal Low-Rank Approximation

被引:0
|
作者
Song, Jiawei [1 ]
Guo, Baolong [1 ]
Yuan, Zhe [1 ]
Wang, Chao [1 ]
He, Fangliang [1 ]
Li, Cheng [2 ]
机构
[1] Xidian Univ, Inst Intelligent Control & Image Engn, Xian 710071, Peoples R China
[2] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral image (HSI) denoising; nonlocal self-similarity; sparse principal component analysis (SPCA); low-rank approximation; subspace representation; SPARSE; RESTORATION; REGULARIZATION;
D O I
10.3390/rs17061021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recently, hyperspectral image (HSI) mixed denoising methods based on nonlocal subspace representation (NSR) have achieved significant success. However, most of these methods focus on optimizing the denoiser for representation coefficient images (RCIs) without considering how to construct RCIs that better inherit the spatial structure of the clean HSI, thereby affecting subsequent denoising performance. Although existing works have constructed RCIs from the perspective of sparse principal component analysis (SPCA), the refinement of RCIs in mixed noise conditions still leaves much to be desired. To address the aforementioned challenges, in this paper, we reconstructed robust RCIs based on SPCA in mixed noise circumstances to better preserve the spatial structure of the clean HSI. Furthermore, we propose to utilize the robust RCIs as prior information and perform iterative denoising in the denoiser that incorporates low-rank approximation. Extensive experiments conducted on both simulated and real HSI datasets demonstrate that the proposed robust RCIs guidance and low-rank approximation method, denoted as RRGNLA, exhibits competitive performance in terms of mixed denoising accuracy and computational efficiency. For instance, on the Washington DC Mall (WDC) dataset in Case 3, the denoising quantitative metrics of the mean peak signal-to-noise ratio (MPSNR), mean structural similarity index (MSSIM), and spectral angle mean (SAM) are 36.06 dB, 0.963, and 3.449, respectively, with a running time of 35.24 s. On the Pavia University (PaU) dataset in Case 4, the denoising quantitative metrics of MPSNR, MSSIM, and SAM are 34.34 dB, 0.924, and 5.505, respectively, with a running time of 32.79 s.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A guidable nonlocal low-rank approximation model for hyperspectral image denoising
    Chen, Yong
    Zhang, Juan
    Zeng, Jinshan
    Lai, Wenzhen
    Gui, Xinfeng
    Jiang, Tai-Xiang
    SIGNAL PROCESSING, 2024, 215
  • [2] Hyperspectral Image Denoising via Correntropy-Based Nonconvex Low-Rank Approximation
    Lin, Peizeng
    Sun, Lei
    Wu, Yaochen
    Ruan, Weiyong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 6841 - 6859
  • [3] Hyperspectral Image Denoising via Low-Rank Representation and CNN Denoiser
    Sun, Hezhi
    Liu, Ming
    Zheng, Ke
    Yang, Dong
    Li, Jindong
    Gao, Lianru
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 716 - 728
  • [4] Hyperspectral Image Denoising Based on Nonlocal Low-Rank and TV Regularization
    Kong, Xiangyang
    Zhao, Yongqiang
    Xue, Jize
    Chan, Jonathan Cheung-Wai
    Ren, Zhigang
    Huang, HaiXia
    Zang, Jiyuan
    REMOTE SENSING, 2020, 12 (12)
  • [5] HYPERSPECTRAL IMAGE DENOISING BASED ON LOW-RANK REPRESENTATION AND SUPERPIXEL SEGMENTATION
    Ma, Jiayi
    Li, Chang
    Ma, Yong
    Wang, Zhongyuan
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3086 - 3090
  • [6] Hyperspectral Image Denoising via Subspace-Based Nonlocal Low-Rank and Sparse Factorization
    Cao, Chunhong
    Yu, Jie
    Zhou, Chengyao
    Hu, Kai
    Xiao, Fen
    Gao, Xieping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (03) : 973 - 988
  • [7] Superpixel-Based Hyperspectral Image Denoising via Local-Global Low-Rank Approximation
    Fan, Ya-Ru
    Li, Daihui
    COMPUTATIONAL INTELLIGENCE, 2025, 41 (02)
  • [8] Hyperspectral Image Denoising Using Global Weighted Tensor Norm Minimum and Nonlocal Low-Rank Approximation
    Kong, Xiangyang
    Zhao, Yongqiang
    Xue, Jize
    Chan, Jonathan Cheung-Wai
    REMOTE SENSING, 2019, 11 (19)
  • [9] Hyperspectral image denoising with superpixel segmentation and low-rank representation
    Fan, Fan
    Ma, Yong
    Li, Chang
    Mei, Xiaoguang
    Huang, Jun
    Ma, Jiayi
    INFORMATION SCIENCES, 2017, 397 : 48 - 68
  • [10] Hyperspectral Image Denoising via Noise-Adjusted Iterative Low-Rank Matrix Approximation
    He, Wei
    Zhang, Hongyan
    Zhang, Liangpei
    Shen, Huanfeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 3050 - 3061