On elliptic equations with unbounded or decaying potentials involving Stein-Weiss convolution parts and critical exponential growth

被引:0
|
作者
Alves, Claudianor Oliveira [1 ]
de Souza, Manasses [2 ]
Shen, Liejun [3 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
Unbounded or decaying potential; Stein-Weiss convolution; Trudinger-Moser inequality; General minimax principle; Variational method; MOSER TYPE INEQUALITY; NONLINEAR SCHRODINGER-EQUATIONS; CHOQUARD-EQUATIONS; EXISTENCE; UNIQUENESS; DOMAINS;
D O I
10.1016/j.jmaa.2025.129483
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of nonlinear Schrodinger equations with Stein-Weiss convolution parts -Delta u + V(x)u = (integral(R2) F(u)/vertical bar x - y vertical bar mu parallel to y vertical bar(beta) dy) f(u)/vertical bar x vertical bar(beta), x is an element of R-2, where Vis an unbounded or decaying potential, beta > 0, mu > 0 with 0 < 2 beta+ mu < 2, and Fdenotes the primitive of fthat fulfills the critical exponential growth in the Trudinger-Moser sense at infinity. Via establishing a new version of the Trudinger-Moser inequality, we shall exploit the general minimax principle to demonstrate the existence of nontrivial solutions using variational method. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:35
相关论文
共 50 条