Catalytic decomposition of methane: Ni-promoted perovskite oxide catalysts for turquoise hydrogen and carbon nanomaterials Co-production

被引:0
|
作者
Zhang, Lan [1 ,2 ]
Zhang, Weike [1 ]
Poh, Chee Kok [3 ]
He, Hongquan [3 ]
Kouk, Qing Yue [3 ]
Ding, Ovi Lian [1 ,2 ]
Zhang, Lili [3 ]
Chan, Siew Hwa [1 ,2 ]
Zeng, Jiren [4 ]
Cao, Guang [5 ]
Abubakar, Saifudin [6 ]
机构
[1] Nanyang Technol Univ, Energy Res Inst NTU ERIN, Singapore 637141, Singapore
[2] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] ASTAR, Inst Sustainabil Chem Energy & Environm ISCE2, 1 Pesek Rd, Singapore 627833, Singapore
[4] Shanghai Technol Ctr, ExxonMobil Technol & Engn, Singapore 200241, Singapore
[5] ExxonMobil Technol & Engn, Annandale, NJ 08801 USA
[6] ExxonMobil Technol & Engn, Singapore 098633, Singapore
来源
ENERGY MATERIALS | 2025年 / 5卷 / 03期
关键词
Methane decomposition; Ni-promoted perovskite oxide catalysts; turquoise hydrogen; carbon nanomaterials; metal exsolution; SULFIDE NICKEL-CATALYST; COX-FREE HYDROGEN; FUEL-CELLS; OXIDATION; CATHODE; STEAM; TEMPERATURE; PERFORMANCE; NANOFIBERS; CRACKING;
D O I
10.20517/energymater.2024.53
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study investigates the effectiveness of catalytic decomposition of methane for producing turquoise hydrogen and solid carbon nanomaterials. The focus is on developing cost-effective and high-performance Nickel (Ni)promoted perovskite oxide catalysts. A series of transition metal, Ni-promoted (La 0.75 Ca 0.25 )(Cr 0.5 Mn 0.5 )O 3-delta (LCCM) catalysts have been successfully prepared using water-based gel-casting technology. These catalysts are designed to decompose methane into turquoise hydrogen and carbon nanomaterials, achieving negligible CO2 emissions. X-ray diffraction results indicate that the solubility of Ni at the B-site of LCCM perovskite is limited, x <= 0.2. Field Emission Scanning Electron Microscopy analysis of xNi-LCCM, calcined at 1050 degrees C for ten h in the air, confirms severe catalyst sintering with excess nickel oxide distributed around the LCCM particles. At a 750 degrees C operating temperature, a Ni to LCCM molar ratio of 1.5 yields a maximum carbon output of 17.04 gC/gNi. Increasing the molar ratios to 2.0 and 2.5 results in carbon yields of 17.17 gC/gNi and 17.63 gC/gNi, respectively, showing minor changes. The morphology of the carbon nanomaterials is unaffected by the molar ratio of NiO promoter to LCCM and remains nearly the same within the scope of this study.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Radiative transfer in a solar chemical reactor for the co-production of hydrogen and carbon by thermal decomposition of methane
    Hirsch, D
    Steinfeld, A
    CHEMICAL ENGINEERING SCIENCE, 2004, 59 (24) : 5771 - 5778
  • [32] Ni doped carbons for hydrogen production by catalytic methane decomposition
    Zhang, Jianbo
    Jin, Lijun
    Li, Yang
    Hu, Haoquan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (10) : 3937 - 3947
  • [33] Electrically promoted catalytic methane oxidative coupling with carbon dioxide over La-perovskite oxide catalysts
    Yabe, Tomohiro
    Sugiura, Kei
    Oshima, Kazumasa
    Ogo, Shuhei
    Sekine, Yasushi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [34] Production of hydrogen and carbon nanofibers through the decomposition of methane over activated carbon supported Ni catalysts
    Prasad, J. Sarada
    Dhand, Vivek
    Himabindu, V.
    Anjaneyulu, Y.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (18) : 11702 - 11711
  • [35] Metallic and carbonaceous -based catalysts performance in the solar catalytic decomposition of methane for hydrogen and carbon production
    Pinilla, J. L.
    Torres, D.
    Lazaro, M. J.
    Suelves, I.
    Moliner, R.
    Canadas, I.
    Rodriguez, J.
    Vidal, A.
    Martinez, D.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (12) : 9645 - 9655
  • [36] Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor
    Pinilla, J. L.
    Utrilla, R.
    Lazaro, M. J.
    Moliner, R.
    Suelves, I.
    Garcia, A. B.
    FUEL PROCESSING TECHNOLOGY, 2011, 92 (08) : 1480 - 1488
  • [37] Development of Ni-Al Catalysts for Hydrogen and Carbon Nanofibre Production by Catalytic Decomposition of Methane. Effect of MgO Addition
    Latorre, N.
    Villacampa, J. I.
    Ubieto, T.
    Romeo, E.
    Royo, C.
    Borgna, A.
    Monzon, A.
    TOPICS IN CATALYSIS, 2008, 51 (1-4) : 158 - 168
  • [38] An overview of production of hydrogen and carbon nanomaterials via thermocatalytic decomposition of methane
    Hadian, Morteza
    Buist, Kay
    Kuipers, Hans
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2023, 42
  • [39] Comparison of metal and carbon catalysts for hydrogen production by methane decomposition
    Guil-Lopez, R.
    Botas, J. A.
    Fierro, J. L. G.
    Serrano, D. P.
    APPLIED CATALYSIS A-GENERAL, 2011, 396 (1-2) : 40 - 51
  • [40] Coal char gasification for co-production of fuel gas and methane decomposition catalysts
    Yang, Wencheng
    Zhang, Jianbo
    Zhang, Lei
    Li, Jingying
    Bai, Yonghui
    Yan, Ze
    Ma, Xiaoxun
    Hou, Cuili
    Yao, Wengui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (29) : 13815 - 13827