Catalytic decomposition of methane: Ni-promoted perovskite oxide catalysts for turquoise hydrogen and carbon nanomaterials Co-production

被引:0
|
作者
Zhang, Lan [1 ,2 ]
Zhang, Weike [1 ]
Poh, Chee Kok [3 ]
He, Hongquan [3 ]
Kouk, Qing Yue [3 ]
Ding, Ovi Lian [1 ,2 ]
Zhang, Lili [3 ]
Chan, Siew Hwa [1 ,2 ]
Zeng, Jiren [4 ]
Cao, Guang [5 ]
Abubakar, Saifudin [6 ]
机构
[1] Nanyang Technol Univ, Energy Res Inst NTU ERIN, Singapore 637141, Singapore
[2] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] ASTAR, Inst Sustainabil Chem Energy & Environm ISCE2, 1 Pesek Rd, Singapore 627833, Singapore
[4] Shanghai Technol Ctr, ExxonMobil Technol & Engn, Singapore 200241, Singapore
[5] ExxonMobil Technol & Engn, Annandale, NJ 08801 USA
[6] ExxonMobil Technol & Engn, Singapore 098633, Singapore
来源
ENERGY MATERIALS | 2025年 / 5卷 / 03期
关键词
Methane decomposition; Ni-promoted perovskite oxide catalysts; turquoise hydrogen; carbon nanomaterials; metal exsolution; SULFIDE NICKEL-CATALYST; COX-FREE HYDROGEN; FUEL-CELLS; OXIDATION; CATHODE; STEAM; TEMPERATURE; PERFORMANCE; NANOFIBERS; CRACKING;
D O I
10.20517/energymater.2024.53
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study investigates the effectiveness of catalytic decomposition of methane for producing turquoise hydrogen and solid carbon nanomaterials. The focus is on developing cost-effective and high-performance Nickel (Ni)promoted perovskite oxide catalysts. A series of transition metal, Ni-promoted (La 0.75 Ca 0.25 )(Cr 0.5 Mn 0.5 )O 3-delta (LCCM) catalysts have been successfully prepared using water-based gel-casting technology. These catalysts are designed to decompose methane into turquoise hydrogen and carbon nanomaterials, achieving negligible CO2 emissions. X-ray diffraction results indicate that the solubility of Ni at the B-site of LCCM perovskite is limited, x <= 0.2. Field Emission Scanning Electron Microscopy analysis of xNi-LCCM, calcined at 1050 degrees C for ten h in the air, confirms severe catalyst sintering with excess nickel oxide distributed around the LCCM particles. At a 750 degrees C operating temperature, a Ni to LCCM molar ratio of 1.5 yields a maximum carbon output of 17.04 gC/gNi. Increasing the molar ratios to 2.0 and 2.5 results in carbon yields of 17.17 gC/gNi and 17.63 gC/gNi, respectively, showing minor changes. The morphology of the carbon nanomaterials is unaffected by the molar ratio of NiO promoter to LCCM and remains nearly the same within the scope of this study.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Technoeconomic analysis for hydrogen and carbon Co-Production via catalytic pyrolysis of methane
    Riley, Jarrett
    Atallah, Chris
    Siriwardane, Ranjani
    Stevens, Robert
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (39) : 20338 - 20358
  • [12] Carbon-neutral hydrogen production by catalytic methane decomposition: a review
    Hantoko, Dwi
    Khan, Wasim Ullah
    Osman, Ahmed I.
    Nasr, Mahmoud
    Rashwan, Ahmed K.
    Gambo, Yahya
    Al Shoaibi, Ahmed
    Chandrasekar, Srinivasakannan
    Hossain, Mohammad M.
    ENVIRONMENTAL CHEMISTRY LETTERS, 2024, 22 (04) : 1623 - 1663
  • [13] Synthesis of Ni and Ni-Cu supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane
    Shen, Yi
    Lua, Aik Chong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 164 : 61 - 69
  • [14] Tailoring Ni/KCC-1 catalyst with transition metals promoters for methane cracking: Insights into hydrogen and carbon nanomaterials Co-production
    Ali, Rizwan
    Mushtaq, Sadiya
    Cheng, Chin Kui
    Palmisano, Giovanni
    Abu Haija, Mohammad
    Al-Ali, Khalid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 127 : 18 - 37
  • [15] Production of hydrogen and carbon nanomaterials using transition metal catalysts through methane decomposition
    Urdiana, G.
    Valdez, R.
    Lastra, G.
    Valenzuela, M. A.
    Olivas, A.
    MATERIALS LETTERS, 2018, 217 : 9 - 12
  • [16] Reinforcing hydrogen and carbon nanotube co-production via Cr-O-Ni catalyzed methane decomposition
    Sun, Zhao
    Gong, Yunhan
    Cheng, Dongfang
    Sun, Zhiqiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (08) : 4893 - 4902
  • [17] Ni doped carbons for hydrogen production by catalytic methane decomposition
    Zhang, Jianbo
    Jin, Lijun
    Li, Yang
    Hu, Haoquan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (10) : 3937 - 3947
  • [18] Hydrogen production by methane decomposition using bimetallic Ni-Fe catalysts
    Tezel, Elif
    Figen, Halit Eren
    Baykara, Sema Z.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (20) : 9930 - 9940
  • [19] Metallic and carbonaceous -based catalysts performance in the solar catalytic decomposition of methane for hydrogen and carbon production
    Pinilla, J. L.
    Torres, D.
    Lazaro, M. J.
    Suelves, I.
    Moliner, R.
    Canadas, I.
    Rodriguez, J.
    Vidal, A.
    Martinez, D.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (12) : 9645 - 9655
  • [20] Review of the production of turquoise hydrogen from methane catalytic decomposition: Optimising reactors for Sustainable Hydrogen production
    Sanyal, Aryamman
    Malalasekera, Weeratunge
    Bandulasena, Hemaka
    Wijayantha, K. G. U.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 72 : 694 - 715