Predicting prognostic factors in kidney transplantation using a machine learning approach to enhance outcome predictions: a retrospective cohort study
被引:1
作者:
Kim, Jin-Myung
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South Korea
Kim, Jin-Myung
[1
]
Jung, HyoJe
论文数: 0引用数: 0
h-index: 0
机构:
Asan Med Ctr, Dept Informat Med, Seoul, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South Korea
Jung, HyoJe
[2
]
Kwon, Hye Eun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South Korea
Kwon, Hye Eun
[1
]
Ko, Youngmin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South Korea
Ko, Youngmin
[1
]
Jung, Joo Hee
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South Korea
Jung, Joo Hee
[1
]
Kwon, Hyunwook
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South Korea
Kwon, Hyunwook
[1
]
Kim, Young Hoon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South Korea
Kim, Young Hoon
[1
]
Jun, Tae Joon
论文数: 0引用数: 0
h-index: 0
机构:
Asan Med Ctr, Asan Inst Life Sci, Big Data Res Ctr, 88,Olympic Ro 43 Gil, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South Korea
Jun, Tae Joon
[3
]
Hwang, Sang-Hyun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Lab Med, 88,Olympic Ro 43 Gil, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South Korea
Hwang, Sang-Hyun
[4
]
Shin, Sung
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South Korea
Shin, Sung
[1
]
机构:
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Surg,Div Kidney & Pancreas Transplantat, 88,Olympic Ro 43 Gil, Seoul 05505, South Korea
[2] Asan Med Ctr, Dept Informat Med, Seoul, South Korea
[3] Asan Med Ctr, Asan Inst Life Sci, Big Data Res Ctr, 88,Olympic Ro 43 Gil, Seoul 05505, South Korea
[4] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Lab Med, 88,Olympic Ro 43 Gil, Seoul 05505, South Korea
deep learning;
kidney transplant;
prognosis;
survival;
TERM GRAFT-SURVIVAL;
LOGISTIC-REGRESSION;
CROSS-MATCH;
FUTURE;
RECIPIENTS;
SELECTION;
IMPACT;
D O I:
10.1097/JS9.0000000000002028
中图分类号:
R61 [外科手术学];
学科分类号:
摘要:
Background:Accurate forecasting of clinical outcomes after kidney transplantation is essential for improving patient care and increasing the success rates of transplants. The authors' study employs advanced machine learning (ML) algorithms to identify crucial prognostic indicators for kidney transplantation. By analyzing complex datasets with ML models, the authors aim to enhance prediction accuracy and provide valuable insights to support clinical decision-making.Materials and methods:Analyzing data from 4077 KT patients (June 1990-May 2015) at a single center, this research included 27 features encompassing recipient/donor traits and peri-transplant data. The dataset was divided into training (80%) and testing (20%) sets. Four ML models-eXtreme Gradient Boosting (XGBoost), Feedforward Neural Network, Logistic Regression, And Support Vector Machine-were trained on carefully selected features to predict the success of graft survival. Performance was assessed by precision, sensitivity, F1 score, area under the receiver operating characteristic (AUROC), and area under the precision-recall curve.Results:XGBoost emerged as the best model, with an AUROC of 0.828, identifying key survival predictors like T-cell flow crossmatch positivity, creatinine levels two years post-transplant and human leukocyte antigen mismatch. The study also examined the prognostic importance of histological features identified by the Banff criteria for renal biopsy, emphasizing the significance of intimal arteritis, interstitial inflammation, and chronic glomerulopathy.Conclusion:The study developed ML models that pinpoint clinical factors crucial for KT graft survival, aiding clinicians in making informed post-transplant care decisions. Incorporating these findings with the Banff classification could improve renal pathology diagnosis and treatment, offering a data-driven approach to prioritizing pathology scores.
机构:
Madras Med Coll & Govt Gen Hosp, Inst Nephrol, Chennai 600003, Tamil Nadu, IndiaMadras Med Coll & Govt Gen Hosp, Inst Nephrol, Chennai 600003, Tamil Nadu, India
Rajendiran, Aravinth Kumar
Jeyachandran, Dhanapriya
论文数: 0引用数: 0
h-index: 0
机构:
Madras Med Coll & Govt Gen Hosp, Inst Nephrol, Chennai 600003, Tamil Nadu, IndiaMadras Med Coll & Govt Gen Hosp, Inst Nephrol, Chennai 600003, Tamil Nadu, India
Jeyachandran, Dhanapriya
Gopalakrishnan, Natarajan
论文数: 0引用数: 0
h-index: 0
机构:
Madras Med Coll & Govt Gen Hosp, Inst Nephrol, Chennai 600003, Tamil Nadu, IndiaMadras Med Coll & Govt Gen Hosp, Inst Nephrol, Chennai 600003, Tamil Nadu, India
Gopalakrishnan, Natarajan
Arumugam, Venkatesh
论文数: 0引用数: 0
h-index: 0
机构:
Madras Med Coll & Govt Gen Hosp, Inst Nephrol, Chennai 600003, Tamil Nadu, IndiaMadras Med Coll & Govt Gen Hosp, Inst Nephrol, Chennai 600003, Tamil Nadu, India
Arumugam, Venkatesh
Thanigachalam, Dineshkumar
论文数: 0引用数: 0
h-index: 0
机构:
Madras Med Coll & Govt Gen Hosp, Inst Nephrol, Chennai 600003, Tamil Nadu, IndiaMadras Med Coll & Govt Gen Hosp, Inst Nephrol, Chennai 600003, Tamil Nadu, India
Thanigachalam, Dineshkumar
Ramanathan, Sakthirajan
论文数: 0引用数: 0
h-index: 0
机构:
Madras Med Coll & Govt Gen Hosp, Inst Nephrol, Chennai 600003, Tamil Nadu, IndiaMadras Med Coll & Govt Gen Hosp, Inst Nephrol, Chennai 600003, Tamil Nadu, India
机构:
Shanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R ChinaShanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R China
Jia, Tianchen
Xu, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Qilu Hosp, Dept Cardiovasc Surg, Jinan, Shandong, Peoples R ChinaShanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R China
Xu, Kai
Bai, Yun
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R ChinaShanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R China
Bai, Yun
Lv, Mengwei
论文数: 0引用数: 0
h-index: 0
机构:
Xuzhou Canc Hosp, Dept Thorac Surg, Xuzhou, Peoples R ChinaShanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R China
Lv, Mengwei
Shan, Lingtong
论文数: 0引用数: 0
h-index: 0
机构:
Sheyang Cty Peoples Hosp, Dept Thorac Surg, Yancheng, Peoples R ChinaShanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R China
Shan, Lingtong
Li, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Shanghai Chest Hosp, Sch Med, Dept Cardiovasc Surg, 241 Huaihai West Rd, Shanghai 200120, Peoples R ChinaShanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R China
Li, Wei
Zhang, Xiaobin
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Shanghai Chest Hosp, Sch Med, Dept Cardiovasc Surg, 241 Huaihai West Rd, Shanghai 200120, Peoples R ChinaShanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R China
Zhang, Xiaobin
Li, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Med Univ, Affiliated Hosp 1, Jiangsu Prov Hosp, Dept Cardiovasc Surg, Nanjing, Peoples R ChinaShanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R China
Li, Zhi
Wang, Zhenhua
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R ChinaShanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R China
Wang, Zhenhua
Zhao, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Qilu Hosp, Dept Cardiovasc Surg, Jinan, Shandong, Peoples R ChinaShanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R China
Zhao, Xin
Li, Mingliang
论文数: 0引用数: 0
h-index: 0
机构:
Ningxia Med Univ, Gen Hosp, Dept Cardiovasc Surg, Yinchuan, Ningxia, Peoples R ChinaShanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R China
Li, Mingliang
Zhang, Yangyang
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Shanghai Chest Hosp, Sch Med, Dept Cardiovasc Surg, 241 Huaihai West Rd, Shanghai 200120, Peoples R ChinaShanghai Ocean Univ, Coll Informat Sci, Shanghai, Peoples R China