Studying the Dynamics Response of Viscoelastic Orthotropic Plates Based on Fractional-Order Derivatives and Shifted Legendre Polynomials

被引:0
作者
Fan, Qianqian [1 ]
Liu, Qiumei [1 ]
Chen, Yiming [2 ]
Cui, Yuhuan [1 ]
Qu, Jingguo [1 ]
Wang, Lei [1 ,3 ]
机构
[1] North China Univ Sci & Technol, Coll Sci, Tangshan 063000, Peoples R China
[2] Yanshan Univ, Sch Sci, Qinhuangdao 066004, Peoples R China
[3] HESAM Univ, Arts & Metiers Inst Technol, LISPEN, F-59000 Lille, France
基金
中国国家自然科学基金;
关键词
orthotropic plates; viscoelastic; fractional order; shifted Legendre polynomials; numerical computation; simulation of dynamics response; GALERKIN METHOD; MODEL; ALGORITHM; EQUATIONS;
D O I
10.3390/math13040622
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper primarily investigates the dynamics response of viscoelastic orthotropic plates under a fractional-order derivative model, which is efficiently simulated numerically using the FKV (Fractional Kelvin-Voigt) model and the shifted Legendre polynomial algorithm. By establishing the fractional-order governing equation and directly solving it in the time domain using a shifted Legendre polynomial, the approach achieves low error and high accuracy. The analysis shows that the load, plate thickness, and creep time all affect the plate displacement, and the fractional-order model outperforms the integer-order model to better capture the dynamics response of the material.
引用
收藏
页数:22
相关论文
共 50 条
[1]   Three-phase-lag thermoelastic heat conduction model with higher-order time-fractional derivatives [J].
Abouelregal, A. E. .
INDIAN JOURNAL OF PHYSICS, 2020, 94 (12) :1949-1963
[2]   Thermo-mechanical post-critical analysis of nonlocal orthotropic plates [J].
Alam, Manjur ;
Mishra, Sudib K. .
APPLIED MATHEMATICAL MODELLING, 2020, 79 :106-125
[3]   Transient Dynamic Analysis of Unconstrained Layer Damping Beams Characterized by a Fractional Derivative Model [J].
Brun, Mikel ;
Cortes, Fernando ;
Elejabarrieta, Maria Jesus .
MATHEMATICS, 2021, 9 (15)
[4]   Modified hybrid B-spline estimation based on spatial regulator tensor network for burger equation with nonlinear fractional calculus [J].
Cao, Baiheng ;
Wu, Xuedong ;
Wang, Yaonan ;
Zhu, Zhiyu .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 220 :253-275
[5]   Numerical analysis of nonlinear variable fractional viscoelastic arch based on shifted Legendre polynomials [J].
Cao, Jiawei ;
Chen, Yiming ;
Wang, Yuanhui ;
Zhang, Hua .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) :8798-8813
[6]  
Chazal C, 2011, J THEOR APP MECH-POL, V49, P1029
[7]   Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets [J].
Chen, Yi-Ming ;
Wei, Yan-Qiao ;
Liu, Da-Yan ;
Yu, Hao .
APPLIED MATHEMATICS LETTERS, 2015, 46 :83-88
[8]   Numerical solution of fractional partial differential equations with variable coefficients using generalized fractional-order Legendre functions [J].
Chen, Yiming ;
Sun, Yannan ;
Liu, Liqing .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 :847-858
[9]   Orthotropic plates resting on viscoelastic foundations with a fractional derivative Kelvin-Voigt model [J].
Chinnaboon, Boonme ;
Panyatong, Monchai ;
Chucheepsakul, Somchai .
COMPOSITE STRUCTURES, 2023, 322
[10]   Stick-slip dynamics of migrating cells on viscoelastic substrates [J].
De, Partho Sakha ;
De, Rumi .
PHYSICAL REVIEW E, 2019, 100 (01)