Enhancing Road Surface Temperature Prediction: A Novel Approach Integrating Transfer Learning with Long Short-Term Memory Neural Networks

被引:0
|
作者
Bai, Shumin [1 ,2 ]
Dai, Bingyou [1 ,2 ]
Yang, Zhen [1 ]
Zhu, Feng [3 ]
Yang, Wenchen [2 ,4 ]
Li, Yong [5 ,6 ]
机构
[1] Tongji Univ, Key Lab Rd & Traff Engn, Minist Educ, Shanghai 201804, Peoples R China
[2] Broadvis Engn Consultants Co Ltd, Natl Engn Res Ctr Geol Disaster Prevent Land Trans, Kunming 650200, Peoples R China
[3] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore
[4] Yunnan Commun Investment & Construct Grp Co Ltd, Yunnan Key Lab Digital Commun, Kunming 650041, Peoples R China
[5] Observat Stn Nanjing Meteorol Bur, Nanjing 210036, Peoples R China
[6] China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing 210008, Peoples R China
关键词
Road surface temperature prediction; Transfer learning (TL); Long short-term memory (LSTM) neural networks; Road weather information system (RWIS); PAVEMENT; MODEL;
D O I
10.1061/JPEODX.PVENG-1616
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Timely and accurate prediction of winter road surface temperature is crucial for the effective operation of a road weather information system (RWIS), which is essential to road traffic safety. A major challenge in achieving high-precision predictions is the lack of extensive data, particularly in newly established road weather stations. To address this challenge, this study proposes a transfer learning and long short-term memory network-based (TL-LSTM) model for road surface temperature prediction. This model is designed to overcome the accuracy limitation typically encountered in small sample modeling. First, the pretrained model containing the long short-term memory (LSTM) network feature extraction module and prediction module is constructed, which learn the pattern in road temperature time series using the long-term data from the established road weather station. Subsequently, the pretrained model is transferred to the target road weather station data set with a small sample for fine-tuning weights to determine the optimal transfer strategy. The results show that the best prediction performance is achieved when freezing the LSTM feature extraction module and the first two fully connected layers of the predictor module. In the case of small samples, the TL-LSTM model improves accuracy by 30% compared to the baseline model, achieving a mean absolute error (MAE) of 0.673, a mean square error (MSE) of 1.314, and a mean absolute percentage error (MAPE) of 12.8%. Notably, the model performs particularly well in the low-temperature range (-5 degrees C to 5 degrees C). It adeptly identifies the periodic fluctuations and uncertainties in road surface temperature. During both cloudy and sunny conditions, its forecasts align closely with the observed values, demonstrating the model's robust reliability.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Battery Remaining Useful Life Prediction Supported by Long Short-Term Memory Neural Network
    Marri, Iacopo
    Petkovski, Emil
    Cristaldi, Loredana
    Faifer, Marco
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [32] Wind Power Prediction based on Recurrent Neural Network with Long Short-Term Memory Units
    Dong, Danting
    Sheng, Zhihao
    Yang, Tiancheng
    2018 IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING (REPE 2018), 2018, : 34 - 38
  • [33] Prediction of ionospheric TEC over China based on long and short-term memory neural network
    Xiong Bo
    Li XiaoLin
    Wang YuQing
    Zhang HanMing
    Liu ZiJun
    Ding Feng
    Zhao BiQiang
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (07): : 2365 - 2377
  • [34] Automated Cloud Based Long Short-Term Memory Neural Network Based SWE Prediction
    Meyal, Alireza Yekta
    Versteeg, Roelof
    Alper, Erek
    Johnson, Doug
    Rodzianko, Anastasia
    Franklin, Maya
    Wainwright, Haruko
    FRONTIERS IN WATER, 2020, 2
  • [35] Remaining useful life prediction for supercapacitor based on long short-term memory neural network
    Zhou, Yanting
    Huang, Yinuo
    Pang, Jinbo
    Wang, Kai
    JOURNAL OF POWER SOURCES, 2019, 440
  • [36] Distributional prediction of short-term traffic using neural networks
    Wang, Bo
    Vu, Hai L.
    Kim, Inhi
    Cai, Chen
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [37] A Recommender System Integrating Long Short-Term Memory and Latent Factor
    Shen, Rao
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (08) : 9931 - 9941
  • [38] Performance Analysis of Long Short-Term Memory Predictive Neural Networks on Time Series Data
    Bolboaca, Roland
    Haller, Piroska
    MATHEMATICS, 2023, 11 (06)
  • [39] Short-Term Traffic Prediction With Deep Neural Networks: A Survey
    Lee, Kyungeun
    Eo, Moonjung
    Jung, Euna
    Yoon, Yoonjin
    Rhee, Wonjong
    IEEE ACCESS, 2021, 9 : 54739 - 54756
  • [40] Long Short-Term Memory Networks' Application on Typhoon Wave Prediction for the Western Coast of Taiwan
    Chao, Wei-Ting
    Kuo, Ting-Jung
    SENSORS, 2024, 24 (13)