Enhancing Road Surface Temperature Prediction: A Novel Approach Integrating Transfer Learning with Long Short-Term Memory Neural Networks

被引:0
|
作者
Bai, Shumin [1 ,2 ]
Dai, Bingyou [1 ,2 ]
Yang, Zhen [1 ]
Zhu, Feng [3 ]
Yang, Wenchen [2 ,4 ]
Li, Yong [5 ,6 ]
机构
[1] Tongji Univ, Key Lab Rd & Traff Engn, Minist Educ, Shanghai 201804, Peoples R China
[2] Broadvis Engn Consultants Co Ltd, Natl Engn Res Ctr Geol Disaster Prevent Land Trans, Kunming 650200, Peoples R China
[3] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore
[4] Yunnan Commun Investment & Construct Grp Co Ltd, Yunnan Key Lab Digital Commun, Kunming 650041, Peoples R China
[5] Observat Stn Nanjing Meteorol Bur, Nanjing 210036, Peoples R China
[6] China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing 210008, Peoples R China
关键词
Road surface temperature prediction; Transfer learning (TL); Long short-term memory (LSTM) neural networks; Road weather information system (RWIS); PAVEMENT; MODEL;
D O I
10.1061/JPEODX.PVENG-1616
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Timely and accurate prediction of winter road surface temperature is crucial for the effective operation of a road weather information system (RWIS), which is essential to road traffic safety. A major challenge in achieving high-precision predictions is the lack of extensive data, particularly in newly established road weather stations. To address this challenge, this study proposes a transfer learning and long short-term memory network-based (TL-LSTM) model for road surface temperature prediction. This model is designed to overcome the accuracy limitation typically encountered in small sample modeling. First, the pretrained model containing the long short-term memory (LSTM) network feature extraction module and prediction module is constructed, which learn the pattern in road temperature time series using the long-term data from the established road weather station. Subsequently, the pretrained model is transferred to the target road weather station data set with a small sample for fine-tuning weights to determine the optimal transfer strategy. The results show that the best prediction performance is achieved when freezing the LSTM feature extraction module and the first two fully connected layers of the predictor module. In the case of small samples, the TL-LSTM model improves accuracy by 30% compared to the baseline model, achieving a mean absolute error (MAE) of 0.673, a mean square error (MSE) of 1.314, and a mean absolute percentage error (MAPE) of 12.8%. Notably, the model performs particularly well in the low-temperature range (-5 degrees C to 5 degrees C). It adeptly identifies the periodic fluctuations and uncertainties in road surface temperature. During both cloudy and sunny conditions, its forecasts align closely with the observed values, demonstrating the model's robust reliability.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Edge of Transfer Learning-Based Long Short-Term Memory Neural Networks in the Application of Battery Surface Temperature Prediction for Electric Vehicles
    Kumar, Pradeep
    Kumar, Shanu
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN INDUSTRIAL ELECTRONICS, 2024, 5 (04): : 1529 - 1536
  • [2] An Ensemble Deep Learning Model for Short-Term Road Surface Temperature Prediction
    Dai, Bingyou
    Yang, Wenchen
    Ji, Xiaofeng
    Zhu, Feng
    Fang, Rui
    Zhou, Linyi
    JOURNAL OF TRANSPORTATION ENGINEERING PART B-PAVEMENTS, 2023, 149 (01)
  • [3] Road surface friction prediction using long short-term memory neural network based on historical data
    Pu, Ziyuan
    Liu, Chenglong
    Shi, Xianming
    Cui, Zhiyong
    Wang, Yinhai
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 26 (01) : 34 - 45
  • [4] A Novel Spatiotemporal Prediction Approach Based on Graph Convolution Neural Networks and Long Short-Term Memory for Money Laundering Fraud
    Xia, Pingfan
    Ni, Zhiwei
    Xiao, Hongwang
    Zhu, Xuhui
    Peng, Peng
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (02) : 1921 - 1937
  • [5] Short-Term Prediction of Global Sea Surface Temperature Using Deep Learning Networks
    Xu, Tianliang
    Zhou, Zhiquan
    Li, Yingchun
    Wang, Chenxu
    Liu, Ying
    Rong, Tian
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (07)
  • [6] A Novel Stacked Long Short-Term Memory Approach of Deep Learning for Streamflow Simulation
    Mirzaei, Majid
    Yu, Haoxuan
    Dehghani, Adnan
    Galavi, Hadi
    Shokri, Vahid
    Mohsenzadeh Karimi, Sahar
    Sookhak, Mehdi
    SUSTAINABILITY, 2021, 13 (23)
  • [7] Using long short-term memory networks for river flow prediction
    Xu, Wei
    Jiang, Yanan
    Zhang, Xiaoli
    Li, Yi
    Zhang, Run
    Fu, Guangtao
    HYDROLOGY RESEARCH, 2020, 51 (06): : 1358 - 1376
  • [8] Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks
    Liu, Jiawei
    Li, Qi
    Chen, Weirong
    Yan, Yu
    Qiu, Yibin
    Cao, Taiqiong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (11) : 5470 - 5480
  • [9] Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation
    Hu, Caihong
    Wu, Qiang
    Li, Hui
    Jian, Shengqi
    Li, Nan
    Lou, Zhengzheng
    WATER, 2018, 10 (11)
  • [10] Applying transfer learning techniques to enhance the accuracy of streamflow prediction produced by long Short-term memory networks with data integration
    Khoshkalam, Yegane
    Rousseau, Alain N.
    Rahmani, Farshid
    Shen, Chaopeng
    Abbasnezhadi, Kian
    JOURNAL OF HYDROLOGY, 2023, 622