Estimation of the High-Frequency Feature Slope in Gravitational Wave Signals from Core Collapse Supernovae Using Machine Learning

被引:0
|
作者
Casallas-Lagos, Alejandro [1 ,2 ]
Antelis, Javier M. [1 ]
Moreno, Claudia [2 ]
Franco-Hernandez, Ramiro [2 ]
机构
[1] Escuela Ingn & Ciencias, Tecnol Monterrey, Monterrey 64849, Mexico
[2] Univ Guadalajara, Dept Fis, Guadalajara 44430, Mexico
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 01期
关键词
gravitational waves; machine learning; high-frequency feature; core-collapse supernovae; parameter estimation; MODELS;
D O I
10.3390/app15010065
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We conducted an in-depth exploration of the use of different machine learning (ML) for regression algorithms, including Linear, Ridge, LASSO, Bayesian Ridge, Decision Tree, and a variety of Deep Neural Network (DNN) architectures, to estimate the slope of the high-frequency feature (HFF), a prominent emergent feature found in the gravitational wave (GW) signals of core collapse supernovae (CCSN). We created a data set of CCSN GW signals generated by an analytical model that mimics the characteristics of the signals obtained from numerical simulations, particularly the HFF. This enabled us to simulate a wide range of HFF slope values and analyze their properties. We opted to employ ML for regression techniques, particularly a supervised learning approach, to analyze the data set due to the parameter chosen for estimating the slope of the HFF. This type of architecture is ideal for this purpose as it can detect the connections between input and output data. In addition, it is suitable for handling high-dimensional input data and produces efficient results with low computational cost. We evaluated the efficiency and performance of the ML algorithms using a set of metrics to measure their ability to accurately predict the HFF slope within the data set. The results showed that a DNN algorithm for regression exhibits the highest accuracy in estimating the slope of the HFF.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Characterizing the Directionality of Gravitational Wave Emission from Matter Motions within Core-collapse Supernovae
    Pajkos, Michael A.
    VanCamp, Steven J.
    Pan, Kuo-Chuan
    Vartanyan, David
    Deppe, Nils
    Couch, Sean M.
    ASTROPHYSICAL JOURNAL, 2023, 959 (01):
  • [22] The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse
    Scheidegger, S.
    Kaeppeli, R.
    Whitehouse, S. C.
    Fischer, T.
    Liebendoerfer, M.
    ASTRONOMY & ASTROPHYSICS, 2010, 514
  • [23] Inference of protoneutron star properties from gravitational-wave data in core-collapse supernovae
    Bizouard, Marie-Anne
    Maturana-Russel, Patricio
    Torres-Forne, Alejandro
    Obergaulinger, Martin
    Cerda-Duran, Pablo
    Christensen, Nelson
    Font, Jose A.
    Meyer, Renate
    PHYSICAL REVIEW D, 2021, 103 (06)
  • [24] A Linear and Quadratic Time-Frequency Analysis of Gravitational Waves from Core-collapse Supernovae
    Kawahara, Hajime
    Kuroda, Takami
    Takiwaki, Tomoya
    Hayama, Kazuhiro
    Kotake, Kei
    ASTROPHYSICAL JOURNAL, 2018, 867 (02):
  • [25] Deep Feature Learning Based Fault Detection with High-Frequency Signals
    Jiang, Zhengyi
    Liu, Chongdang
    Zhang, Linxuan
    2022 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2022, : 101 - 107
  • [26] Using supervised learning algorithms as a follow-up method in the search of gravitational waves from core-collapse supernovae
    Antelis, Javier M.
    Cavaglia, Marco
    Hansen, Travis
    Morales, Manuel D.
    Moreno, Claudia
    Mukherjee, Soma
    Szczepanczk, Marek J.
    Zanolin, Michele
    PHYSICAL REVIEW D, 2022, 105 (08)
  • [27] Inference of protoneutron star properties in core-collapse supernovae from a gravitational-wave detector network
    Bruel, Tristan
    Bizouard, Marie-Ann
    Obergaulinger, Martin
    Maturana-Russel, Patricio
    Torres-Forne, Alejandro
    Cerda-Duran, Pablo
    Christensen, Nelson
    Font, Jose A.
    Meyer, Renate
    PHYSICAL REVIEW D, 2023, 107 (08)
  • [28] Characterizing the temporal evolution of the high-frequency gravitational wave emission for a core collapse supernova with laser interferometric data: A neural network approach
    Casallas-Lagos, Alejandro
    Antelis, Javier M.
    Moreno, Claudia
    Zanolin, Michele
    Mezzacappa, Anthony
    Szczepanczyk, Marek J.
    PHYSICAL REVIEW D, 2023, 108 (08)
  • [29] Search for core collapse supernovae signals in LIGO's third observation run using a network of gravitational wave detectors integrated with a multiclass convolutional neural network
    Faisal, Shahrear K.
    Nurbek, Gaukhar
    Benjamin, Michael
    Sedhai, Bhawana
    Mukherjee, Soma
    PHYSICAL REVIEW D, 2024, 110 (06)
  • [30] High-frequency Analysis of Diffraction from Baffes in Gravitational Wave Interferometers
    Pelosi, G.
    De Salvo, R.
    Selleri, S.
    Pinto, I. M.
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 2443 - 2447