ACLNet: A Deep Learning Model for ACL Rupture Classification Combined with Bone Morphology

被引:1
作者
Liu, Chao [1 ,2 ,3 ]
Yu, Xueqing [1 ,2 ,3 ]
Wang, Dingyu [4 ,5 ,6 ]
Jiang, Tingting [1 ,2 ,3 ]
机构
[1] Peking Univ, Sch Comp Sci, Natl Engn Res Ctr Visual Technol, Beijing, Peoples R China
[2] Peking Univ, Sch Comp Sci, State Key Lab Multimedia Informat Proc, Beijing, Peoples R China
[3] Peking Univ, Natl Biomed Imaging Ctr, Beijing, Peoples R China
[4] Peking Univ, Peking Univ Third Hosp, Dept Sports Med, Inst Sports Med, Beijing, Peoples R China
[5] Beijing Key Lab Sports Injuries, Beijing, Peoples R China
[6] Minist Educ, Engn Res Ctr Sports Trauma Treatment Technol & De, Beijing, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT V | 2024年 / 15005卷
基金
北京市自然科学基金;
关键词
ACL Classification; MRI Image Processing; Point Cloud Transformer; Feature Fusion; ANTERIOR CRUCIATE LIGAMENT; TIBIAL SLOPE; TEARS; WIDTH; RISK;
D O I
10.1007/978-3-031-72086-4_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Magnetic Resonance Imaging (MRI) is widely used in diagnosing anterior cruciate ligament (ACL) injuries due to its ability to provide detailed image data. However, existing deep learning approaches often overlook additional factors beyond the image itself. In this study, we aim to bridge this gap by exploring the relationship between ACL rupture and the bone morphology of the femur and tibia. Leveraging extensive clinical experience, we acknowledge the significance of this morphological data, which is not readily observed manually. To effectively incorporate this vital information, we introduce ACLNet, a novel model that combines the convolutional representation of MRI images with the transformer representation of bone morphological point clouds. This integration significantly enhances ACL injury predictions by leveraging both imaging and geometric data. Our methodology demonstrated an enhancement in diagnostic precision on the in-house dataset compared to image-only methods, elevating the accuracy from 87.59% to 92.57%. This strategy of utilizing implicitly relevant information to enhance performance holds promise for a variety of medical-related tasks.
引用
收藏
页码:57 / 67
页数:11
相关论文
共 23 条
  • [1] Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury
    Al-Saeed, Osama
    Brown, Mary
    Athyal, Reji
    Sheikh, Mehraj
    [J]. KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2013, 21 (03) : 678 - 682
  • [2] Knee Morphological Risk Factors for Anterior Cruciate Ligament Injury A Systematic Review
    Bayer, Steve
    Meredith, Sean J.
    Wilson, Kevin
    de Sa, Darren
    Pauyo, Thierry
    Byrne, Kevin
    McDonough, Christine M.
    Musahl, Volker
    [J]. JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2020, 102 (08) : 703 - 718
  • [3] Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet
    Bien, Nicholas
    Rajpurkar, Pranav
    Ball, Robyn L.
    Irvin, Jeremy
    Park, Allison
    Jones, Erik
    Bereket, Michael
    Patel, Bhavik N.
    Yeom, Kristen W.
    Shpanskaya, Katie
    Halabi, Safwan
    Zucker, Evan
    Fanton, Gary
    Amanatullah, Derek F.
    Beaulieu, Christopher F.
    Riley, Geoffrey M.
    Stewart, Russell J.
    Blankenberg, Francis G.
    Larson, David B.
    Jones, Ricky H.
    Langlotz, Curtis P.
    Ng, Andrew Y.
    Lungren, Matthew P.
    [J]. PLOS MEDICINE, 2018, 15 (11)
  • [4] Posterior Tibial Slope, Notch Width, Condylar Morphology, Trochlear Inclination, and Tibiofemoral Mismatch Predict Outcomes Following Anterior Cruciate Ligament Reconstruction
    Bongbong, Dale N.
    Oeding, Jacob F.
    Ma, C. Benjamin
    Pedoia, Valentina
    Lansdown, Drew A.
    [J]. ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 2022, 38 (05) : 1689 - +
  • [5] Bruna J, 2014, Arxiv, DOI arXiv:1312.6203
  • [6] PCT: Point cloud transformer
    Guo, Meng-Hao
    Cai, Jun-Xiong
    Liu, Zheng-Ning
    Mu, Tai-Jiang
    Martin, Ralph R.
    Hu, Shi-Min
    [J]. COMPUTATIONAL VISUAL MEDIA, 2021, 7 (02) : 187 - 199
  • [7] Slope-reducing tibial osteotomy decreases ACL-graft forces and anterior tibial translation under axial load
    Imhoff, Florian B.
    Mehl, Julian
    Comer, Brendan J.
    Obopilwe, Elifho
    Cote, Mark P.
    Feucht, Matthias J.
    Wylie, James D.
    Imhoff, Andreas B.
    Arciero, Robert A.
    Beitzel, Knut
    [J]. KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2019, 27 (10) : 3381 - 3389
  • [8] Diagnostic Performance of Artificial Intelligence for Detection of Anterior Cruciate Ligament and Meniscus Tears: A Systematic Review
    Kunze, Kyle N.
    Rossi, David M.
    White, Gregory M.
    Karhade, Aditya, V
    Deng, Jie
    Williams, Brady T.
    Chahla, Jorge
    [J]. ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 2021, 37 (02) : 771 - 781
  • [9] Femoral and Tibial Bony Risk Factors for Anterior Cruciate Ligament Injuries Are Present in More Than 50% of Healthy Individuals
    Micicoi, Gregoire
    Jacquet, Chistophe
    Khakha, Raghbir
    LiArno, Sally
    Faizan, Ahmad
    Seil, Romain
    Kocaoglu, Baris
    Cerciello, Simone
    Martz, Pierre
    Ollivier, Matthieu
    [J]. AMERICAN JOURNAL OF SPORTS MEDICINE, 2021, 49 (14) : 3816 - 3824
  • [10] Anatomic Factors Associated With the Development of an Anterior Cruciate Ligament Rerupture in Men: A Case-Control Study
    Misir, Abdulhamit
    Uzun, Erdal
    Sayer, Gokhan
    Guney, Betul
    Guney, Ahmet
    [J]. AMERICAN JOURNAL OF SPORTS MEDICINE, 2022, 50 (12) : 3228 - 3235