Blending 2D topography images from the Surface Water and Ocean Topography (SWOT) mission into the altimeter constellation with the Level-3 multi-mission Data Unification and Altimeter Combination System (DUACS)

被引:0
作者
Dibarboure, Gerald [1 ]
Anadon, Cecile [2 ]
Briol, Frederic [2 ]
Cadier, Emeline [2 ]
Chevrier, Robin [2 ,3 ]
Delepoulle, Antoine [2 ]
Faugere, Yannice [1 ]
Laloue, Alice [2 ]
Morrow, Rosemary
Picot, Nicolas [1 ]
Prandi, Pierre [2 ]
Pujol, Marie-Isabelle [2 ]
Raynal, Matthias [1 ]
Treboutte, Anaelle [2 ]
Ubelmann, Clement [4 ]
机构
[1] Ctr Natl Etud Spatiale CNES, Toulouse, France
[2] Collecte Localisat Satell CLS, Ramonville St Agne, France
[3] Lab Etud Geophys & Oceanog Spatiales LEGOS, Toulouse, France
[4] Datlas, Grenoble, France
关键词
CALIBRATION; JASON-2;
D O I
10.5194/os-21-283-2025
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Surface Water and Ocean Topography (SWOT) mission delivers unprecedented swath-altimetry products. Despite SWOT's 2D coverage and precision, its Level-2 ocean products suffer from the same limitations as their counterparts from nadir altimetry missions. To achieve the mission's primary science objectives, the space agencies generate Level-2 ocean products with SWOT alone. In contrast, some research domains and applications require consistent multi-mission observations, such as the Level-3 ocean products provided by the Data Unification and Altimeter Combination System (DUACS) for almost 3 decades and with 20 different satellites. In this paper, we describe how we extended the Level-3 algorithms to handle SWOT's unique swath-altimeter data. We also illustrate and discuss the benefits, relevance, and limitations of Level-3 swath-altimeter products for various research domains.
引用
收藏
页码:283 / 323
页数:41
相关论文
共 58 条
  • [21] Investigating the Performance of Four Empirical Cross-Calibration Methods for the Proposed SWOT Mission
    Dibarboure, Gerald
    Ubelmann, Clement
    [J]. REMOTE SENSING, 2014, 6 (06): : 4831 - 4869
  • [22] E.U. Copernicus Marine Service Information (CMEMS), 2024, Global Ocean Colour (Copernicus-GlobColour), Bio-Geo-Chemical, L3 (daily) from Satellite Observations (Near Real Time), E.U Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS) data set, DOI [10.48670/moi-00278, DOI 10.48670/MOI-00278]
  • [23] E.U. Copernicus Marine Service Information (CMEMS), 2024, GLOBALANALYSISFORECASTPHY001024: Ocean/Sea Physical Analysis and Forecast, DOI [10.48670/moi-00016, DOI 10.48670/MOI-00016]
  • [24] Faugere Y., 2022, EGU GEN ASSEMBLY 202
  • [25] Fjortoft R., 2023, 2023 SWOT SCI TEAM M
  • [26] Fu L.-L., Geophys. Res. Lett., V51
  • [27] High-resolution measurement of ocean surface topography by radar interferometry for oceanographic and geophysical applications
    Fu, LL
    Rodriguez, E
    [J]. STATE OF THE PLANET: FRONTIERS AND CHALLENGES IN GEOPHYSICS, 2004, 150 : 209 - 224
  • [28] Image Style Transfer Using Convolutional Neural Networks
    Gatys, Leon A.
    Ecker, Alexander S.
    Bethge, Matthias
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2414 - 2423
  • [29] Development of an Image De-Noising Method in Preparation for the Surface Water and Ocean Topography Satellite Mission
    Gomez-Navarro, Laura
    Cosme, Emmanuel
    Le Sommer, Julien
    Papadakis, Nicolas
    Pascual, Ananda
    [J]. REMOTE SENSING, 2020, 12 (04)
  • [30] Jousset S., 2023, ESS Open Archive, DOI [10.22541/essoar.170158328.85804859/v1, DOI 10.22541/ESSOAR.170158328.85804859/V1]