Existence and uniqueness of non-Abelian vortices in a coupled quantum field theory

被引:0
作者
Xu, Yilu [1 ]
Chen, Shouxin [1 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R China
关键词
CHARGED VORTICES; GAUGE; EQUATIONS;
D O I
10.1063/5.0221260
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Vortices produce locally concentrated field configurations and are solutions to the nonlinear partial differential equations systems of complicated structures. In this paper, we study the non-Abelian vortices in a quantum field theory which is the two-dimensions non-Abelian vortex zeromodes coupled to the massless four-dimensions Yang-Mills modes. We establish the existence and uniqueness for vortex solutions by researching the nonlinear elliptic equations systems with exponential terms in R-2 using the calculus of variations. In addition, the asymptotic behavior of the solutions at infinity and the quantized integrals in R-2 are obtained.
引用
收藏
页数:14
相关论文
共 36 条
[1]   First structure formation. II. Cosmic string plus hot dark matter models [J].
Abel, T ;
Stebbins, A ;
Anninos, P ;
Norman, ML .
ASTROPHYSICAL JOURNAL, 1998, 508 (02) :530-534
[2]  
ABRIKOSOV AA, 1957, SOV PHYS JETP-USSR, V5, P1174
[3]   CLASSICAL SOLUTIONS OF SU(2) YANG-MILLS THEORIES [J].
ACTOR, A .
REVIEWS OF MODERN PHYSICS, 1979, 51 (03) :461-525
[4]   A CONDENSATE SOLUTION OF THE ELECTROWEAK THEORY WHICH INTERPOLATES BETWEEN THE BROKEN AND THE SYMMETRIC PHASE [J].
AMBJORN, J ;
OLESEN, P .
NUCLEAR PHYSICS B, 1990, 330 (01) :193-204
[5]  
[Anonymous], 2004, TOPOLOGICAL SOLITONS, DOI [DOI 10.1017/CBO9780511617034, 10.1017/cbo9780511617034]
[6]   Liouville type equations with singular data and their applications to periodic multivortices for the Electroweak Theory [J].
Bartolucci, D ;
Thrantello, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 229 (01) :3-47
[7]   Self-trapping and flipping of double-charged vortices in optically induced photonic lattices [J].
Bezryadina, Anna ;
Eugenieva, Eugenia ;
Chen, Zhigang .
OPTICS LETTERS, 2006, 31 (16) :2456-2458
[8]   Geometry and dynamics of a coupled 4D-2D quantum field theory [J].
Bolognesi, Stefano ;
Chatterjee, Chandrasekhar ;
Evslin, Jarah ;
Konishi, Kenichi ;
Ohashi, Keisuke ;
Seveso, Luigi .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (01) :1-37
[9]   Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor [J].
Chen, Shouxin ;
Han, Xiaosen ;
Lozano, Gustavo ;
Schaposnik, Fidel A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) :2458-2498
[10]   Multiple Vortices in the Aharony-Bergman-Jafferis-Maldacena Model [J].
Chen, Shouxin ;
Zhang, Ruifeng ;
Zhu, Meili .
ANNALES HENRI POINCARE, 2013, 14 (05) :1169-1192