Population attributable risk of a competing-risk model for breast cancer and non-breast cancer death among women ≥ 65 years

被引:0
作者
Schonberg, Mara A. [1 ]
Wolfson, Emily A. [1 ]
Eliassen, A. Heather [2 ,3 ]
Rosner, Bernard A. [2 ,3 ,5 ]
Lacroix, Andrea Z. [4 ]
Nelson, Rebecca A. [6 ]
Chlebowski, Rowan T. [7 ]
Ngo, Long H. [1 ,8 ]
机构
[1] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Med, Div Gen Med & Primary Care, 1309 Beacon,Off 219, Boston, MA 02115 USA
[2] Harvard Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Harvard Sch Publ Hlth, Channing Div Network Med, Boston, MA USA
[4] Univ Calif San Diego, Herbert Wertheim Sch Publ Hlth & Human Longev Sci, San Diego, CA USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Nutr, Boston, MA USA
[6] City Hope Natl Med Ctr, Dept Computat & Quantitat Med, Duarte, CA USA
[7] Lundquist Inst, Torrance, CA USA
[8] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
基金
美国国家卫生研究院;
关键词
Breast cancer risk; Women 55+; Competing mortality risk; BODY-MASS INDEX; ESTROGEN-RECEPTOR; MAMMOGRAPHIC DENSITY; POSTMENOPAUSAL WOMEN; HEALTH; PROPORTION; EXPRESSION; MORTALITY; PROGESTIN; OBESITY;
D O I
10.1007/s10549-025-07683-w
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose To inform decision making around mammography-screening frequency and cessation, we previously used Fine-Gray competing-risk regression to develop and validate a model to estimate older women's 10-year risk of breast cancer and their competing risk of non-breast cancer (non-BC) death. Here, we aimed to understand the amount of incident breast cancer and non-BC death risk explained by our model among women >= 65y. Methods We included women >= 65y who completed the 2004 Nurses' Health Study questionnaire (NHS, n = 59,662) or who participated in the Women's Health Initiative-Extension Study (WHI-ES, n = 82,528). We calculated our model's full and risk factor-specific population attributable risk (PAR%) for incident breast cancer and non-BC death. Results Mean age of the NHS participants was 73.5y (SD 5.2); 3.1% were diagnosed with breast cancer and 26.1% experienced non-BC death within 10 years. Mean age of WHI-ES participants was 73.6y (SD 5.4); 4.2% were diagnosed with breast cancer and 17.7% experienced non-BC death within 10 years. The full-model PAR% for breast cancer was 58.8% (22.7-80.6) in NHS and 54.8% (24.8-75.2%) in WHI-ES. Modifiable risk factors explained approximately 1/3 of breast cancer risk; BMI >= 30 had a PAR% of 6.5% (3.1-9.9%) in NHS and 12.2% (8.5-16.0%) in WHI-ES. For non-BC death, the full-model PAR% was 94.2% (91.4-96.1%) in NHS and 86.2% (80.9-90.0%) in WHI-ES. Conclusions Our competing-risk model explained the majority of breast cancers and non-BC deaths in women >= 65y, and we identified risk factors (e.g., elevated BMI) that may be targeted to reduce the burden of breast cancer in older women.
引用
收藏
页码:687 / 698
页数:12
相关论文
共 63 条
[1]  
[Anonymous], 2024, ASSESSING CHANCE
[2]  
[Anonymous], 2023, WOMENS HLTH INITIAT
[3]  
[Anonymous], 2016, Nurses' Health Study
[4]  
[Anonymous], 2024, EPROGNOSIS BREAST
[5]   Population attributable risk of invasive postmenopausal breast cancer and breast cancer subtypes for modifiable and non-modifiable risk factors [J].
Barnes, Benjamin B. E. ;
Steindorf, Karen ;
Hein, Rebecca ;
Flesch-Janys, Dieter ;
Chang-Claude, Jenny .
CANCER EPIDEMIOLOGY, 2011, 35 (04) :345-352
[6]   A review of adjusted estimators of attributable risk [J].
Benichou, J .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2001, 10 (03) :195-216
[7]   Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies [J].
Beral, V. ;
Bull, D. ;
Pirie, K. ;
Reeves, G. ;
Peto, R. ;
Skegg, D. ;
LaVecchia, C. ;
Magnusson, C. ;
Pike, M. C. ;
Thomas, D. ;
Hamajima, N. ;
Hirose, K. ;
Tajima, K. ;
Rohan, T. ;
Friedenreich, C. M. ;
Calle, E. E. ;
Gapstur, S. M. ;
Patel, A. V. ;
Coates, R. J. ;
Liff, J. M. ;
Talamini, R. ;
Chantarakul, N. ;
Koetsawang, S. ;
Rachawat, D. ;
Marcou, Y. ;
Kakouri, E. ;
Duffy, S. W. ;
Morabia, A. ;
Schuman, L. ;
Stewart, W. ;
Szklo, M. ;
Coogan, P. F. ;
Palmer, J. R. ;
Rosenberg, L. ;
Band, P. ;
Coldman, A. J. ;
Gallagher, R. P. ;
Hislop, T. G. ;
Yang, P. ;
Cummings, S. R. ;
Canfell, K. ;
Sitas, F. ;
Chao, P. ;
Lissowska, J. ;
Horn-Ross, P. L. ;
John, E. M. ;
Kolonel, L. M. ;
Nomura, A. M. Y. ;
Ghiasvand, R. ;
Hu, J. .
LANCET ONCOLOGY, 2012, 13 (11) :1141-1151
[8]   Breast Cancer Population Attributable Risk Proportions Associated with Body Mass Index and Breast Density by Race/Ethnicity and Menopausal Status [J].
Bissell, Michael C. S. ;
Kerlikowske, Karla ;
Sprague, Brian L. ;
Tice, Jeffery A. ;
Gard, Charlotte C. ;
Tossas, Katherine Y. ;
Rauscher, Garth H. ;
Trentham-Dietz, Amy ;
Henderson, Louise M. ;
Onega, Tracy ;
Keegan, Theresa H. M. ;
Miglioretti, Diana L. .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2020, 29 (10) :2048-2056
[9]   Mammographic density and the risk and detection of breast cancer [J].
Boyd, Norman F. ;
Guo, Helen ;
Martin, Lisa J. ;
Sun, Limei ;
Stone, Jennifer ;
Fishell, Eve ;
Jong, Roberta A. ;
Hislop, Greg ;
Chiarelli, Anna ;
Minkin, Salomon ;
Yaffe, Martin J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (03) :227-236
[10]   ESTIMATING THE POPULATION ATTRIBUTABLE RISK FOR MULTIPLE RISK-FACTORS USING CASE-CONTROL DATA [J].
BRUZZI, P ;
GREEN, SB ;
BYAR, DP ;
BRINTON, LA ;
SCHAIRER, C .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1985, 122 (05) :904-913