A new variable-coefficient mZK-Burgers model for nonlinear Rossby waves and its soliton solution

被引:0
作者
Zhao, Baojun [1 ,2 ,3 ]
Zhang, Mengying [1 ]
机构
[1] Yangzhou Univ, Coll Hydraul Sci & Engn, Yangzhou, Jiangsu, Peoples R China
[2] Hohai Univ, Key Lab, Minist Educ Coastal Disaster & Protect, Nanjing, Jiangsu, Peoples R China
[3] Yatai Pump & Valve Co Ltd, Taizhou, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Variable-coefficient mZK-Burgers equation; Jacobi elliptic function expansion; parameter perturbation; MULTISOLITON SOLUTION; EXPANSION METHOD; EQUATION; DYNAMICS;
D O I
10.1142/S0219887825400122
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, with the multi-scale analysis and Wentzel-Kramers-Brillouin (WKB) theory, a variable-coefficient modified Zakharov-Kuznetsov (mZK)-Burgers equation is obtained via the quasi-geostrophic potential vorticity model. The equation can be described the propagation of the nonlinear long wave and solitary eddy. The exact solutions are given by the Jacobi elliptic function expansion method to analyze wave propagation characteristics, and the elliptical modulus k affects the amplitude and period of waves.
引用
收藏
页数:12
相关论文
共 30 条
  • [1] Construction of periodic and solitary wave solutions by the extended Jacobi elliptic function expansion method
    Abdou, M. A.
    Elhanbaly, A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (07) : 1229 - 1241
  • [2] Numerical Solution of Fractional Benney Equation
    Akinlar, Mehmet Ali
    Secer, Aydin
    Bayram, Mustafa
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 1633 - 1637
  • [3] LONG NON-LINEAR WAVES IN FLUID FLOWS
    BENNEY, DJ
    [J]. JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (01): : 52 - &
  • [4] A new three dimensional dissipative Boussinesq equation for Rossby waves and its multiple soliton solutions
    Chen, Liguo
    Gao, Feifei
    Li, Linlin
    Yang, Liangui
    [J]. RESULTS IN PHYSICS, 2021, 26
  • [5] Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1+1)-dimensional dispersive long wave equation
    Chen, Y
    Wang, Q
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 24 (03) : 745 - 757
  • [6] Dou FQ, 2006, COMMUN THEOR PHYS, V45, P1063
  • [7] A note on the homogeneous balance method
    Fan, EG
    Zhang, HQ
    [J]. PHYSICS LETTERS A, 1998, 246 (05) : 403 - 406
  • [8] Time-Space Fractional Coupled Generalized Zakharov-Kuznetsov Equations Set for Rossby Solitary Waves in Two-Layer Fluids
    Fu, Lei
    Chen, Yaodeng
    Yang, Hongwei
    [J]. MATHEMATICS, 2019, 7 (01)
  • [9] Fu ZT, 2005, COMMUN THEOR PHYS, V43, P45
  • [10] New exact solutions to the KdV-Burgers-Kuramoto equation
    Fu, ZT
    Liu, SK
    Liu, SD
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (02) : 609 - 616