Blood Glucose Prediction in Type 1 Diabetes Based on Long Short-Term Memory

被引:0
作者
Butunoi, Bogdan-Petru [1 ]
Stolojescu-Crisan, Cristina [3 ]
Negru, Viorel [1 ,2 ]
机构
[1] West Univ Timisoara, Dept Comp Sci, 4 Blvd Vasile Parvan, Timisoara 300223, Romania
[2] E Austria Inst, Timisoara, Romania
[3] Politehn Univ Timisoara, Dept Commun, 2 Blvd V Parvan, Timisoara 300223, Romania
来源
ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2024, PT II | 2024年 / 2166卷
关键词
Continuous glucose monitoring; Type; 1; diabetes; Time series forecasting; LSTM;
D O I
10.1007/978-3-031-70259-4_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The management of Type 1 Diabetes (T1D) has always been a complex task, requiring patients to continuously monitor their blood glucose levels and adjust insulin doses accordingly. This paper explores the potential of Artificial Intelligence (AI), specifically Long Short-Term Memory (LSTM) networks, to revolutionize the way Type 1 Diabetes is managed. This research takes a novel approach by focusing solely on blood glucose levels, aiming to determine if Artificial Intelligence can effectively predict and recommend insulin doses based on this singular data point. In this paper, we compare three variants of Long short-term memory (LSTM) models, with the purpose of blood glucose level prediction: unidirectional LTSM, stacked LTSM and Bi-directional LTSM. The data used for this study is unique in that it is sourced from a single individual, ensuring consistency and eliminating inter-individual variability. The findings presented in this paper could serve as a foundation for future research and the development of Artificial Intelligence driven diabetes management systems.
引用
收藏
页码:458 / 469
页数:12
相关论文
共 23 条
[1]   A Multi-Patient Data-Driven Approach to Blood of Glucose Prediction [J].
Aliberti, Alessandro ;
Pupillo, Irene ;
Terna, Stefano ;
Macii, Enrico ;
Cataldo, Santa Di ;
Patti, Edoardo ;
Acquaviva, Andrea .
IEEE ACCESS, 2019, 7 :69311-69325
[2]   Continuous blood glucose level prediction of Type 1 Diabetes based on Artificial Neural Network [J].
Ben Ali, Jaouher ;
Hamdi, Takoua ;
Fnaiech, Nader ;
Di Costanzo, Veronique ;
Fnaiech, Farhat ;
Ginoux, Jean-Marc .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2018, 38 (04) :828-840
[3]   Is blood glucose predictable from previous values? A solicitation for data [J].
Bremer, T ;
Gough, DA .
DIABETES, 1999, 48 (03) :445-451
[4]   Blood Glucose Level Prediction using Physiological Models and Support Vector Regression [J].
Bunescu, Razvan ;
Struble, Nigel ;
Marling, Cindy ;
Shubrook, Jay ;
Schwartz, Frank .
2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013), VOL 1, 2013, :135-140
[5]   Predicting Blood Glucose using an LSTM Neural Network [J].
El Idriss, Touria ;
Idri, Ali ;
Abnane, Ibtissam ;
Bakkoury, Zohra .
PROCEEDINGS OF THE 2019 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2019, :35-41
[6]  
Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947
[7]   LSTM: A Search Space Odyssey [J].
Greff, Klaus ;
Srivastava, Rupesh K. ;
Koutnik, Jan ;
Steunebrink, Bas R. ;
Schmidhuber, Juergen .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (10) :2222-2232
[8]   Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm [J].
Hamdi, Takoua ;
Ben Ali, Jaouher ;
Di Costanzo, Veronique ;
Fnaiech, Farhat ;
Moreau, Eric ;
Ginoux, Jean-Marc .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2018, 38 (02) :362-372
[9]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[10]   Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning Model [J].
Li, Yung-Hui ;
Harfiya, Latifa Nabila ;
Purwandari, Kartika ;
Lin, Yue-Der .
SENSORS, 2020, 20 (19) :1-19