Generative artificial intelligence enables the generation of bone scintigraphy images and improves generalization of deep learning models in data-constrained environments

被引:1
作者
Haberl, David [1 ,2 ]
Ning, Jing [1 ,2 ]
Kluge, Kilian [1 ,2 ]
Kumpf, Katarina [3 ]
Yu, Josef [1 ]
Jiang, Zewen [1 ,2 ]
Constantino, Claudia [4 ]
Monaci, Alice [5 ]
Starace, Maria [5 ]
Haug, Alexander R. [1 ,2 ]
Calabretta, Raffaella [1 ]
Camoni, Luca [6 ]
Bertagna, Francesco [6 ]
Mascherbauer, Katharina [7 ]
Hofer, Felix [7 ]
Albano, Domenico [6 ]
Sciagra, Roberto [5 ]
Oliveira, Francisco [4 ]
Costa, Durval [4 ]
Nitsche, Christian [7 ]
Hacker, Marcus [1 ]
Spielvogel, Clemens P. [1 ]
机构
[1] Med Univ Vienna, Dept Biomed Imaging & Image guided Therapy, Div Nucl Med, Spitalgasse 23, A-1090 Vienna, Austria
[2] Med Univ Vienna, Christian Doppler Lab Appl Metabol, Vienna, Austria
[3] Med Univ Vienna, IT Serv & Strateg Informat Management, IT4Science, Vienna, Austria
[4] Champalimaud Fdn, Champalimaud Clin Ctr, Nucl Med Radiopharmacol, Lisbon, Portugal
[5] Univ Florence, Dept Expt & Clin Biomed Sci, Nucl Med Unit, Florence, Italy
[6] Univ Brescia, ASST Spedali Civili Brescia, Brescia, Italy
[7] Med Univ Vienna, Dept Internal Med 2, Div Cardiol, Vienna, Austria
关键词
Synthetic data; Generative; Artificial intelligence; Bone scintigraphy; Multicenter;
D O I
10.1007/s00259-025-07091-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeAdvancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization. MethodsWe trained a generative model on 99mTc-bone scintigraphy scans from 9,170 patients in one center to generate high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis. A blinded reader study was performed to assess the clinical validity and quality of the generated data. We investigated the added value of the generated data by augmenting an independent small single-center dataset with synthetic data and by training a deep learning model to detect abnormal uptake in a downstream classification task. We tested this model on 7,472 scans from 6,448 patients across four external sites in a cross-tracer and cross-scanner setting and associated the resulting model predictions with clinical outcomes. ResultsThe clinical value and high quality of the synthetic imaging data were confirmed by four readers, who were unable to distinguish synthetic scans from real scans (average accuracy: 0.48% [95% CI 0.46-0.51]), disagreeing in 239 (60%) of 400 cases (Fleiss' kappa: 0.18). Adding synthetic data to the training set improved model performance by a mean (+/- SD) of 33(+/- 10)% AUC (p < 0.0001) for detecting abnormal uptake indicative of bone metastases and by 5(+/- 4)% AUC (p < 0.0001) for detecting uptake indicative of cardiac amyloidosis across both internal and external testing cohorts, compared to models without synthetic training data. Patients with predicted abnormal uptake had adverse clinical outcomes (log-rank: p < 0.0001). ConclusionsGenerative AI enables the targeted generation of bone scintigraphy images representing different clinical conditions. Our findings point to the potential of synthetic data to overcome challenges in data sharing and in developing reliable and prognostic deep learning models in data-limited environments.
引用
收藏
页码:2355 / 2368
页数:14
相关论文
共 26 条
[1]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[2]   ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2-evidence base and standardized methods of imaging [J].
Dorbala, Sharmila ;
Ando, Yukio ;
Bokhari, Sabahat ;
Dispenzieri, Angela ;
Falk, Rodney H. ;
Ferrari, Victor A. ;
Fontana, Marianna ;
Gheysens, Olivier ;
Gillmore, Julian D. ;
Glaudemans, Andor W. J. M. ;
Hanna, Mazen A. ;
Hazenberg, Bouke P. C. ;
Kristen, Arnt, V ;
Kwong, Raymond Y. ;
Maurer, Mathew S. ;
Merlini, Giampaolo ;
Miller, Edward J. ;
Moon, James C. ;
Murthy, Venkatesh L. ;
Quarta, C. Cristina ;
Rapezzi, Claudio ;
Ruberg, Frederick L. ;
Shah, Sanjiv J. ;
Start, Riemer H. J. A. ;
Verberne, Hein J. ;
Bourque, Jamieson M. .
JOURNAL OF NUCLEAR CARDIOLOGY, 2019, 26 (06) :2065-2123
[3]   Improved long-term survival with tafamidis treatment in patients with transthyretin amyloid cardiomyopathy and severe heart failure symptoms [J].
Elliott, Perry ;
Gundapaneni, Balarama ;
Sultan, Marla B. ;
Ines, Monica ;
Garcia-Pavia, Pablo .
EUROPEAN JOURNAL OF HEART FAILURE, 2023, 25 (11) :2060-2064
[4]   Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis [J].
Gillmore, Julian D. ;
Maurer, Mathew S. ;
Falk, Rodney H. ;
Merlini, Giampaolo ;
Damy, Thibaud ;
Dispenzieri, Angela ;
Wechalekar, Ashutosh D. ;
Berk, John L. ;
Quarta, Candida C. ;
Grogan, Martha ;
Lachmann, Helen J. ;
Bokhari, Sabahat ;
Castano, Adam ;
Dorbala, Sharmila ;
Johnson, Geoff B. ;
Glaudemans, Andor W. J. M. ;
Rezk, Tamer ;
Fontana, Marianna ;
Palladini, Giovanni ;
Milani, Paolo ;
Guidalotti, Pierluigi L. ;
Flatman, Katarina ;
Lane, Thirusha ;
Vonberg, Frederick W. ;
Whelan, Carol J. ;
Moon, James C. ;
Ruberg, Frederick L. ;
Miller, Edward J. ;
Hutt, David F. ;
Hazenberg, Bouke P. ;
Rapezzi, Claudio ;
Hawkins, Philip N. .
CIRCULATION, 2016, 133 (24) :2404-+
[5]   18F-FDG PET Maximum-Intensity Projections and Artificial Intelligence: A Win-Win Combination to Easily Measure Prognostic Biomarkers in DLBCL Patients [J].
Girum, Kibrom B. ;
Rebaud, Louis ;
Cottereau, Anne-Segolene ;
Meignan, Michel ;
Clerc, Jerome ;
Vercellino, Laetitia ;
Casasnovas, Olivier ;
Morschhauser, Franck ;
Thieblemont, Catherine ;
Buvat, Irenene .
JOURNAL OF NUCLEAR MEDICINE, 2022, 63 (12) :1925-1932
[6]   Using domain knowledge for robust and generalizable deep learning-based CT-free PET attenuation and scatter correction [J].
Guo, Rui ;
Xue, Song ;
Hu, Jiaxi ;
Sari, Hasan ;
Mingels, Clemens ;
Zeimpekis, Konstantinos ;
Prenosil, George ;
Wang, Yue ;
Zhang, Yu ;
Viscione, Marco ;
Sznitman, Raphael ;
Rominger, Axel ;
Li, Biao ;
Shi, Kuangyu .
NATURE COMMUNICATIONS, 2022, 13 (01)
[7]  
Gutsche Robin, 2023, J Nucl Med, V64, P1594, DOI 10.2967/jnumed.123.265725
[8]   Deep learning for [18F]fluorodeoxyglucose-PET-CT classification in patients with lymphoma: a dual-centre retrospective analysis [J].
Haggstrom, Ida ;
Leithner, Doris ;
Alven, Jennifer ;
Campanella, Gabriele ;
Abusamra, Murad ;
Zhang, Honglei ;
Chhabra, Shalini ;
Beer, Lucian ;
Haug, Alexander ;
Salles, Gilles ;
Raderer, Markus ;
Staber, Philipp B. ;
Becker, Anton ;
Hricak, Hedvig ;
Fuchs, Thomas J. ;
Schoeder, Heiko ;
Mayerhoefer, Marius E. .
LANCET DIGITAL HEALTH, 2024, 6 (02) :114-125
[9]   Stable Diffusion Model-based Scintigraphy Image Synthesis: Data Augmentation Toward Enhanced Multiclass Thyroid Diagnosis [J].
Hajianfar, Ghasem ;
Sabouri, Maziar ;
Manesh, Abdollah Saberi ;
Bagheri, Soroush ;
Arabi, Mohsen ;
Zakavi, Seyed Rasoul ;
Askari, Emran ;
Rasouli, Ali ;
Asadzadeh, Azin ;
Aghaee, Atena ;
Fattahi, Kourosh ;
Bayat, Ehsan ;
Mogharrabi, Mahdi ;
Chehreghani, Mohammad ;
Salimi, Yazdan ;
Sanaat, Amirhossein ;
Rahmin, Arman ;
Shiri, Isaac ;
Zaidi, Habib .
2024 12TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING, EUVIP 2024, 2024,
[10]   Breaking medical data sharing boundaries by using synthesized radiographs [J].
Han, Tianyu ;
Nebelung, Sven ;
Haarburger, Christoph ;
Horse, Nicolas ;
Reinartz, Sebastian ;
Merhof, Dorit ;
Kiessling, Fabian ;
Schulzl, Vol Kma R. ;
Truhn, Daniel .
SCIENCE ADVANCES, 2020, 6 (49)