Evaluation of repeated machine learning-based phenotyping in patients with cardiogenic shock

被引:0
|
作者
Zweck, E. [1 ]
Kanwar, M. [2 ]
Li, S. [3 ]
Sinha, S. S. [4 ]
Garan, A. R. [5 ]
Hernandez-Montfort, J. [6 ]
Abraham, J. [7 ]
Polzin, A. [1 ]
Kelm, M. [1 ]
Burkhoff, D. [8 ]
Kapur, N. K. [9 ]
机构
[1] Univ Hosp Duesseldorf, Dusseldorf, Germany
[2] Allegheny Gen Hosp, Pittsburgh, PA USA
[3] Med City Healthcare, Dallas, TX USA
[4] Inova Heart & Vasc Inst, Falls Church, VA USA
[5] Beth Israel Deaconess Med Ctr, Boston, MA USA
[6] Baylor Scott & White Hlth, Temple, TX USA
[7] Providence Heart & Vasc Inst, Ctr Cardiovasc Analyt Res & Data Sci, Portland, OR USA
[8] Cardiovasc Res Fdn, New York, NY USA
[9] Tufts Med Ctr Inc, Cardiovasc Ctr, Boston, MA USA
关键词
D O I
10.1093/eurheartj/ehae666.1697
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Machine learning-based prediction of mortality in pediatric trauma patients
    Deleon, Alex
    Murala, Anish
    Decker, Isabelle
    Rajasekaran, Karthik
    Moreira, Alvaro
    FRONTIERS IN PEDIATRICS, 2025, 13
  • [42] Seasonal pigment fluctuation in diploid and polyploid Arabidopsis revealed by machine learning-based phenotyping method PlantServation
    Akiyama, Reiko
    Goto, Takao
    Tameshige, Toshiaki
    Sugisaka, Jiro
    Kuroki, Ken
    Sun, Jianqiang
    Akita, Junichi
    Hatakeyama, Masaomi
    Kudoh, Hiroshi
    Kenta, Tanaka
    Tonouchi, Aya
    Shimahara, Yuki
    Sese, Jun
    Kutsuna, Natsumaro
    Shimizu-Inatsugi, Rie
    Shimizu, Kentaro K.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [43] A Machine Learning-Based Method to Identify Bipolar Disorder Patients
    J. Mateo-Sotos
    A. M. Torres
    J. L. Santos
    O. Quevedo
    C. Basar
    Circuits, Systems, and Signal Processing, 2022, 41 : 2244 - 2265
  • [44] Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth
    Abraham, Abin
    Le, Brian
    Kosti, Idit
    Straub, Peter
    Velez-Edwards, Digna R.
    Davis, Lea K.
    Newton, J. M.
    Muglia, Louis J.
    Rokas, Antonis
    Bejan, Cosmin A.
    Sirota, Marina
    Capra, John A.
    BMC MEDICINE, 2022, 20 (01)
  • [45] Towards the synthesis of spectral imaging and machine learning-based approaches for non-invasive phenotyping of plants
    Alexei Solovchenko
    Boris Shurygin
    Dmitry A. Nesterov
    Dmitry V. Sorokin
    Biophysical Reviews, 2023, 15 (5) : 939 - 946
  • [46] Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth
    Abin Abraham
    Brian Le
    Idit Kosti
    Peter Straub
    Digna R. Velez-Edwards
    Lea K. Davis
    J. M. Newton
    Louis J. Muglia
    Antonis Rokas
    Cosmin A. Bejan
    Marina Sirota
    John A. Capra
    BMC Medicine, 20
  • [47] A machine learning-based trust evaluation model for wireless sensor networks
    Huang, Yiyang
    Li, Xiaoyong
    Yuan, Jie
    Yuan, Kaiguo
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 654 - 658
  • [48] Machine Learning Analysis of Association of Capillary Refill Time With In-Hospital Mortality in Cardiogenic Shock Patients
    Sharma, Arth
    Chatterjee, Saurav
    JACC-CARDIOVASCULAR INTERVENTIONS, 2023, 16 (04) : S52 - S52
  • [49] USE OF MACHINE LEARNING TOOLS TO IDENTIFY SOCIAL DETERMINANTS OF HEALTH ASSOCIATED WITH READMISSION IN CARDIOGENIC SHOCK PATIENTS
    Hashimi, Basil
    Falta, Sarah
    Eibel, Adam
    Chaudhary, Rahul
    Very, Brad
    Thoma, Floyd
    Hickey, Gavin W.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 696 - 696
  • [50] Interpretable Combinatorial Machine Learning-Based Shale Fracability Evaluation Methods
    Wang, Di
    Jiao, Dingyu
    Zhang, Zihang
    Zhou, Runze
    Guo, Weize
    Su, Huai
    ENERGIES, 2025, 18 (01)