Utilizing Multi-Omics Analysis to Elucidate the Molecular Mechanisms of Oat Responses to Drought Stress

被引:0
|
作者
Chen, Xiaojing [1 ,2 ,3 ]
Liu, Jinghui [1 ,2 ]
Zhao, Baoping [1 ,2 ]
Mi, Junzhen [1 ,2 ]
Xu, Zhongshan [1 ,2 ]
机构
[1] Natl Outstanding Talents Agr Res & Their Innovat T, Hohhot 010019, Peoples R China
[2] Cereal Engn Technol Res Ctr Inner Mongolia Autonom, Hohhot 010019, Peoples R China
[3] Inner Mongolia Agr Univ, Coll Life Sci, Hohhot 010019, Peoples R China
来源
PLANTS-BASEL | 2025年 / 14卷 / 05期
关键词
oat; drought stress; transcriptomics; proteomics; multi-omics; ROOTS;
D O I
10.3390/plants14050792
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The oat is a crop and forage species with rich nutritional value, capable of adapting to various harsh growing environments, including dry and poor soils. It plays an important role in agricultural production and sustainable development. However, the molecular mechanisms underlying the responses of oat to drought stress remain unclear, warranting further research. In this study, we conducted a pot experiment with the drought-resistant cultivar JiaYan 2 (JIA2) and water-sensitive cultivar BaYou 9 (BA9) during the booting stage under three water gradient treatment conditions: 30% field capacity (severe stress), 45% field capacity (moderate stress), and 70% field capacity (normal water supply). After 7 days of stress, root samples were collected for transcriptome and proteome analyses. Transcriptome analysis revealed that under moderate stress, JIA2 upregulated 1086 differential genes and downregulated 2919 differential genes, while under severe stress, it upregulated 1792 differential genes and downregulated 4729 differential genes. Under moderate stress, BA9 exhibited an upregulation of 395 differential genes, a downregulation of 669, and an upregulation of 886 differential genes, and it exhibited 439 downregulations under severe stress. Under drought stress, most of the differentially expressed genes (DEGs) specific to JIA2 were downregulated, mainly involving redox reactions, carbohydrate metabolism, plant hormone signal regulation, and secondary metabolism. Proteomic analysis revealed that in JIA2, under moderate stress, 489 differential proteins were upregulated and 394 were downregulated, while 493 differential proteins were upregulated and 701 were downregulated under severe stress. In BA9, 590 and 397 differential proteins were upregulated under moderate stress, with 126 and 75 upregulated differential proteins under severe stress. Correlation analysis between transcriptomics and proteomics demonstrated that compared with no drought stress, four types of differentially expressed proteins (DEPs) were identified in the JIA2 differential gene-protein interaction network analysis under severe stress. These included 13 key cor DEGs and DEPs related to plant hormone signal transduction, biosynthesis of secondary metabolites, carbohydrate metabolism processes, and metabolic pathways. The consistency of gene and protein expression was validated using qRT-PCR, indicating their key roles in the strong drought resistance of JIA2.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Multi-omics analysis to explore the molecular mechanisms related to keloid
    Xu, Hailin
    Li, Keai
    Liang, Xiaofeng
    Wang, Zhiyong
    Yang, Bin
    BURNS, 2025, 51 (03)
  • [2] Unravelling the molecular mechanism underlying drought stress response in chickpea via integrated multi-omics analysis
    Singh, Vikram
    Gupta, Khushboo
    Singh, Shubhangi
    Jain, Mukesh
    Garg, Rohini
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [3] Response Mechanisms to Flooding Stress in Mulberry Revealed by Multi-Omics Analysis
    Hu, Jingtao
    Chen, Wenjing
    Duan, Yanyan
    Ru, Yingjing
    Cao, Wenqing
    Xiang, Pingwei
    Huang, Chengzhi
    Zhang, Li
    Chen, Jingsheng
    Gan, Liping
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2024, 93 (02) : 227 - 245
  • [4] Molecular and multi-omics in plants under stress
    Saravanakumar, Kandasamy
    Wang, Myeong-Hyeon
    Rengasamy, Kannan RR.
    PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 2020, 112
  • [5] Exploring the molecular mechanisms network of breast cancer by multi-omics analysis
    Jiang, Wei
    Zhang, Yanjun
    Wang, Qiuqiong
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2025, 21 (01) : 129 - 137
  • [6] Elucidation of molecular mechanisms of pediatric cancers using multi-omics analysis
    Takita, Junko
    CANCER SCIENCE, 2024, 115 : 1481 - 1481
  • [7] Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley
    Qiufang Shen
    Liangbo Fu
    Fei Dai
    Lixi Jiang
    Guoping Zhang
    Dezhi Wu
    BMC Genomics, 17
  • [8] Multi-omics analysis of nitrifying sludge under carbon disulfide stress: Nitrification performance and molecular mechanisms
    Liu, Qian
    Chen, Jie
    Zhou, Qi
    Hou, Yanan
    Li, Zhiling
    Li, Wei
    Lv, Sihao
    Ren, Nanqi
    Wang, Ai-Jie
    Huang, Cong
    WATER RESEARCH, 2024, 258
  • [9] Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley
    Shen, Qiufang
    Fu, Liangbo
    Dai, Fei
    Jiang, Lixi
    Zhang, Guoping
    Wu, Dezhi
    BMC GENOMICS, 2016, 17
  • [10] Multi-omics analysis of hexaploid triticale that show molecular responses to salt stress during seed germination
    Wang, Dongxia
    Li, Jiedong
    Li, Shiming
    Fu, Jiongjie
    Liu, Baolong
    Cao, Dong
    FRONTIERS IN PLANT SCIENCE, 2025, 15